未验证 提交 e510ab88 编写于 作者: B Bai Yifan 提交者: GitHub

add 2/3d adaptive_avg_pooling (#2408)

* add 2/3d adaptive_pooling

* fix format

* fix format

* add en doc rst

* fix format

* fix doc

* fix doc

* refine example code

* unify example code
上级 274fe576
......@@ -154,4 +154,6 @@ paddle.nn
nn/functional/loss/margin_ranking_loss.rst
nn/functional/activation/sigmoid.rst
nn/layer/loss/MarginRankingLoss.rst
nn/layer/activation/Sigmoid.rst
nn/AdaptiveAvgPool2d.rst
nn/AdaptiveAvgPool3d.rst
nn/layer/activation/Sigmoid.rst
\ No newline at end of file
.. _api_nn_pooling_AdaptiveAvgPool2d:
AdaptiveAvgPool2d
-----------------
.. autoclass:: paddle.nn.AdaptiveAvgPool2d
:members:
:inherited-members:
:noindex:
.. _api_nn_pooling_AdaptiveAvgPool3d:
AdaptiveAvgPool3d
-----------------
.. autoclass:: paddle.nn.AdaptiveAvgPool3d
:members:
:inherited-members:
:noindex:
......@@ -8,3 +8,5 @@ functional
functional/l1_loss.rst
functional/nll_loss.rst
functional/mse_loss.rst
functional/adaptive_avg_pool2d.rst
functional/adaptive_avg_pool3d.rst
.. _api_nn_functional_adaptive_avg_pool2d:
adaptive_avg_pool2d
--------------------
.. autofunction:: paddle.nn.functional.adaptive_avg_pool2d
:noindex:
.. _api_nn_functional_adaptive_avg_pool3d:
adaptive_avg_pool3d
--------------------
.. autofunction:: paddle.nn.functional.adaptive_avg_pool3d
:noindex:
......@@ -166,4 +166,6 @@ paddle.nn
nn_cn/yolo_box_cn.rst
nn_cn/loss_cn/MarginRankingLoss_cn.rst
nn_cn/functional_cn/margin_ranking_loss_cn.rst
nn_cn/AdaptiveAvgPool2d_cn.rst
nn_cn/AdaptiveAvgPool3d_cn.rst
AdaptiveAvgPool2d
-------------------------------
.. py:function:: paddle.nn.AdaptiveAvgPool2d(output_size, data_format="NCHW", name=None)
该算子根据输入 `x` , `output_size` 等参数对一个输入Tensor计算2D的自适应平均池化。输入和输出都是4-D Tensor,
默认是以 `NCHW` 格式表示的,其中 `N` 是 batch size, `C` 是通道数, `H` 是输入特征的高度, `H` 是输入特征的宽度。
计算公式如下:
.. math::
hstart &= floor(i * H_{in} / H_{out})
hend &= ceil((i + 1) * H_{in} / H_{out})
wstart &= floor(j * W_{in} / W_{out})
wend &= ceil((j + 1) * W_{in} / W_{out})
Output(i ,j) &= \frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
参数
:::::::::
- **output_size** (int|list|turple): 算子输出特征图的尺寸,如果其是list或turple类型的数值,必须包含两个元素,H和W。H和W既可以是int类型值也可以是None,None表示与输入特征尺寸相同。
- **data_format** (str): 输入和输出的数据格式,可以是"NCHW"和"NHWC"。N是批尺寸,C是通道数,H是特征高度,W是特征宽度。默认值:"NCHW"。
- **name** (str,可选): 操作的名称(可选,默认值为None)。更多信息请参见 :ref:`api_guide_Name`。
形状
:::::::::
- **x** (Tensor): 默认形状为(批大小,通道数,高度,宽度),即NCHW格式的4-D Tensor。 其数据类型为float16, float32, float64, int32或int64。
- **output** (Tensor): 默认形状为(批大小,通道数,输出特征高度,输出特征宽度),即NCHW格式的4-D Tensor。 其数据类型与输入相同。
返回
:::::::::
计算AdaptiveAvgPool2d的可调用对象
抛出异常
:::::::::
- ``ValueError`` - 如果 ``data_format`` 既不是"NCHW"也不是"NHWC"。
代码示例
:::::::::
.. code-block:: python
# adaptive avg pool2d
# suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
# output shape is [N, C, m, n], adaptive pool divide H and W dimensions
# of input data into m * n grids averagely and performs poolings in each
# grid to get output.
# adaptive avg pool performs calculations as follow:
#
# for i in range(m):
# for j in range(n):
# hstart = floor(i * H / m)
# hend = ceil((i + 1) * H / m)
# wstart = floor(i * W / n)
# wend = ceil((i + 1) * W / n)
# output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
#
import paddle
import numpy as np
paddle.disable_static()
input_data = np.random.rand(2, 3, 32, 32)
x = paddle.to_tensor(input_data)
# x.shape is [2, 3, 32, 32]
adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2d(output_size=3)
pool_out = adaptive_avg_pool(x = x)
# pool_out.shape is [2, 3, 3, 3]
\ No newline at end of file
AdaptiveAvgPool3d
-------------------------------
.. py:function:: paddle.nn.AdaptiveAvgPool3d(output_size, data_format="NCDHW", name=None)
该算子根据输入 `x` , `output_size` 等参数对一个输入Tensor计算3D的自适应平均池化。输入和输出都是5-D Tensor,
默认是以 `NCDHW` 格式表示的,其中 `N` 是 batch size, `C` 是通道数, `D` 是特征图长度, `H` 是输入特征的高度, `H` 是输入特征的宽度。
计算公式如下:
.. math::
dstart &= floor(i * D_{in} / D_{out})
dend &= ceil((i + 1) * D_{in} / D_{out})
hstart &= floor(j * H_{in} / H_{out})
hend &= ceil((j + 1) * H_{in} / H_{out})
wstart &= floor(k * W_{in} / W_{out})
wend &= ceil((k + 1) * W_{in} / W_{out})
Output(i ,j, k) &= \frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
参数
:::::::::
- **output_size** (int|list|turple): 算子输出特征图的尺寸,如果其是list或turple类型的数值,必须包含三个元素,D,H和W。D,H和W既可以是int类型值也可以是None,None表示与输入特征尺寸相同。
- **data_format** (str): 输入和输出的数据格式,可以是"NCDHW"和"NDHWC"。N是批尺寸,C是通道数,D是特征长度,H是特征高度,W是特征宽度。默认值:"NCDHW"。
- **name** (str,可选): 操作的名称(可选,默认值为None)。更多信息请参见 :ref:`api_guide_Name`。
形状
:::::::::
- **x** (Tensor): 默认形状为(批大小,通道数,长度,高度,宽度),即NCDHW格式的5-D Tensor。 其数据类型为float16, float32, float64, int32或int64.
- **output** (Tensor): 默认形状为(批大小,通道数,输出特征长度,输出特征高度,输出特征宽度),即NCDHW格式的5-D Tensor。 其数据类型与输入相同。
返回
:::::::::
计算AdaptiveAvgPool3d的可调用对象
抛出异常
:::::::::
- ``ValueError`` - 如果 ``data_format`` 既不是"NCDHW"也不是"NDHWC"。
代码示例
:::::::::
.. code-block:: python
# adaptive avg pool3d
# suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
# output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
# of input data into l * m * n grids averagely and performs poolings in each
# grid to get output.
# adaptive avg pool performs calculations as follow:
#
# for i in range(l):
# for j in range(m):
# for k in range(n):
# dstart = floor(i * D / l)
# dend = ceil((i + 1) * D / l)
# hstart = floor(j * H / m)
# hend = ceil((j + 1) * H / m)
# wstart = floor(k * W / n)
# wend = ceil((k + 1) * W / n)
# output[:, :, i, j, k] =
# avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
import paddle
import numpy as np
paddle.disable_static()
input_data = np.random.rand(2, 3, 8, 32, 32)
x = paddle.to_tensor(input_data)
# x.shape is [2, 3, 8, 32, 32]
adaptive_avg_pool = paddle.nn.AdaptiveAvgPool3d(output_size=3)
pool_out = adaptive_avg_pool(x = x)
# pool_out = [2, 3, 3, 3, 3]
......@@ -14,4 +14,6 @@ functional
functional_cn/margin_ranking_loss_cn.rst
functional_cn/sigmoid_cn.rst
functional_cn/mse_loss_cn.rst
functional_cn/sigmoid_cn.rst
functional_cn/adaptive_avg_pool2d_cn.rst
functional_cn/adaptive_avg_pool3d_cn.rst
functional_cn/sigmoid_cn.rst
\ No newline at end of file
adaptive_avg_pool2d
-------------------------------
.. py:function:: paddle.nn.functional.adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None)
该算子根据输入 `x` , `output_size` 等参数对一个输入Tensor计算2D的自适应平均池化。输入和输出都是4-D Tensor,
默认是以 `NCHW` 格式表示的,其中 `N` 是 batch size, `C` 是通道数, `H` 是输入特征的高度, `H` 是输入特征的宽度。
计算公式如下:
.. math::
hstart &= floor(i * H_{in} / H_{out})
hend &= ceil((i + 1) * H_{in} / H_{out})
wstart &= floor(j * W_{in} / W_{out})
wend &= ceil((j + 1) * W_{in} / W_{out})
Output(i ,j) &= \frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
参数
:::::::::
- **x** (Tensor): 默认形状为(批大小,通道数,高度,宽度),即NCHW格式的4-D Tensor。 其数据类型为float16, float32, float64, int32或int64.
- **output_size** (int|list|turple): 算子输出特征图的尺寸,如果其是list或turple类型的数值,必须包含两个元素,H和W。H和W既可以是int类型值也可以是None,None表示与输入特征尺寸相同。
- **data_format** (str): 输入和输出的数据格式,可以是"NCHW"和"NHWC"。N是批尺寸,C是通道数,H是特征高度,W是特征宽度。默认值:"NCHW"。
- **name** (str,可选): 操作的名称(可选,默认值为None)。更多信息请参见 :ref:`api_guide_Name`。
返回
:::::::::
``Tensor``, 默认形状为(批大小,通道数,输出特征高度,输出特征宽度),即NCHW格式的4-D Tensor,其数据类型与输入相同。
抛出异常
:::::::::
- ``ValueError`` - 如果 ``data_format`` 既不是"NCHW"也不是"NHWC"。
代码示例
:::::::::
.. code-block:: python
# adaptive avg pool2d
# suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
# output shape is [N, C, m, n], adaptive pool divide H and W dimensions
# of input data into m * n grids averagely and performs poolings in each
# grid to get output.
# adaptive avg pool performs calculations as follow:
#
# for i in range(m):
# for j in range(n):
# hstart = floor(i * H / m)
# hend = ceil((i + 1) * H / m)
# wstart = floor(i * W / n)
# wend = ceil((i + 1) * W / n)
# output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
#
import paddle
import numpy as np
paddle.disable_static()
input_data = np.random.rand(2, 3, 32, 32)
x = paddle.to_tensor(input_data)
# x.shape is [2, 3, 32, 32]
pool_out = paddle.nn.functional.adaptive_avg_pool2d(
x = x,
output_size=[3, 3])
# pool_out.shape is [2, 3, 3, 3]
\ No newline at end of file
adaptive_avg_pool3d
-------------------------------
.. py:function:: paddle.nn.functional.adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None)
该算子根据输入 `x` , `output_size` 等参数对一个输入Tensor计算3D的自适应平均池化。输入和输出都是5-D Tensor,
默认是以 `NCDHW` 格式表示的,其中 `N` 是 batch size, `C` 是通道数, `D` 是特征图长度, `H` 是输入特征的高度, `H` 是输入特征的宽度。
计算公式如下:
.. math::
dstart &= floor(i * D_{in} / D_{out})
dend &= ceil((i + 1) * D_{in} / D_{out})
hstart &= floor(j * H_{in} / H_{out})
hend &= ceil((j + 1) * H_{in} / H_{out})
wstart &= floor(k * W_{in} / W_{out})
wend &= ceil((k + 1) * W_{in} / W_{out})
Output(i ,j, k) &= \frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
参数
:::::::::
- **x** (Tensor): 默认形状为(批大小,通道数,长度,高度,宽度),即NCDHW格式的5-D Tensor。 其数据类型为float16, float32, float64, int32或int64.
- **output_size** (int|list|turple): 算子输出特征图的尺寸,如果其是list或turple类型的数值,必须包含三个元素,D,H和W。D,H和W既可以是int类型值也可以是None,None表示与输入特征尺寸相同。
- **data_format** (str): 输入和输出的数据格式,可以是"NCDHW"和"NDHWC"。N是批尺寸,C是通道数,D是特征长度,H是特征高度,W是特征宽度。默认值:"NCDHW"。
- **name** (str,可选): 操作的名称(可选,默认值为None)。更多信息请参见 :ref:`api_guide_Name`。
返回
:::::::::
``Tensor``, 默认形状为(批大小,通道数,输出特征长度,输出特征高度,输出特征宽度),即NCDHW格式的5-D Tensor,其数据类型与输入相同。
抛出异常
:::::::::
- ``ValueError`` - 如果 ``data_format`` 既不是"NCDHW"也不是"NDHWC"。
代码示例
:::::::::
.. code-block:: python
# adaptive avg pool3d
# suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
# output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
# of input data into l * m * n grids averagely and performs poolings in each
# grid to get output.
# adaptive avg pool performs calculations as follow:
#
# for i in range(l):
# for j in range(m):
# for k in range(n):
# dstart = floor(i * D / l)
# dend = ceil((i + 1) * D / l)
# hstart = floor(j * H / m)
# hend = ceil((j + 1) * H / m)
# wstart = floor(k * W / n)
# wend = ceil((k + 1) * W / n)
# output[:, :, i, j, k] =
# avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
import paddle
import numpy as np
paddle.disable_static()
input_data = np.random.rand(2, 3, 8, 32, 32)
x = paddle.to_tensor(input_data)
# x.shape is [2, 3, 8, 32, 32]
pool_out = paddle.nn.functional.adaptive_avg_pool3d(
x = x,
output_size=[3, 3, 3])
# pool_out.shape is [2, 3, 3, 3, 3]
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册