Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
FluidDoc
提交
d7da19ba
F
FluidDoc
项目概览
PaddlePaddle
/
FluidDoc
通知
5
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
23
列表
看板
标记
里程碑
合并请求
111
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
F
FluidDoc
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
23
Issue
23
列表
看板
标记
里程碑
合并请求
111
合并请求
111
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d7da19ba
编写于
11月 21, 2019
作者:
G
Guo Sheng
提交者:
GitHub
11月 21, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update the code sample in cn doc of dynamic_gru and gru_unit. (#1607)
上级
04b012c2
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
9 addition
and
7 deletion
+9
-7
doc/fluid/api_cn/layers_cn/dynamic_gru_cn.rst
doc/fluid/api_cn/layers_cn/dynamic_gru_cn.rst
+5
-3
doc/fluid/api_cn/layers_cn/gru_unit_cn.rst
doc/fluid/api_cn/layers_cn/gru_unit_cn.rst
+4
-4
未找到文件。
doc/fluid/api_cn/layers_cn/dynamic_gru_cn.rst
浏览文件 @
d7da19ba
...
...
@@ -60,9 +60,11 @@ dynamic_gru
import paddle.fluid as fluid
dict_dim, emb_dim = 128, 64
data = fluid.layers.data(name='sequence', shape=[1],
dtype='int32', lod_level=1)
emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
data = fluid.data(name='sequence',
shape=[None],
dtype='int64',
lod_level=1)
emb = fluid.embedding(input=data, size=[dict_dim, emb_dim])
hidden_dim = 512
x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
...
...
doc/fluid/api_cn/layers_cn/gru_unit_cn.rst
浏览文件 @
d7da19ba
...
...
@@ -57,12 +57,12 @@ Gated Recurrent Unit(GRU)循环神经网络计算单元。该OP用于完成
import paddle.fluid as fluid
dict_dim, emb_dim = 128, 64
data = fluid.
layers.data(name='step_data', shape=[1], dtype='int32
')
emb = fluid.
layers.
embedding(input=data, size=[dict_dim, emb_dim])
data = fluid.
data(name='step_data', shape=[None], dtype='int64
')
emb = fluid.embedding(input=data, size=[dict_dim, emb_dim])
hidden_dim = 512
x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
pre_hidden = fluid.
layers.
data(
name='pre_hidden', shape=[hidden_dim], dtype='float32')
pre_hidden = fluid.data(
name='pre_hidden', shape=[
None,
hidden_dim], dtype='float32')
hidden = fluid.layers.gru_unit(
input=x, hidden=pre_hidden, size=hidden_dim * 3)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录