未验证 提交 c36aaddc 编写于 作者: T tangwei12 提交者: GitHub

fix code in save/load (#1577)

上级 512ef999
......@@ -270,12 +270,12 @@ save_vars、save_params、save_persistables 以及 save_inference_model的区别
pserver_endpoints = "127.0.0.1:1001,127.0.0.1:1002"
trainers = 4
training_role == "PSERVER"
current_endpoint = "127.0.0.1:1002"
config = fluid.DistributeTranspilerConfig()
t = fluid.DistributeTranspiler(config=config)
t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers, sync_mode=True, current_endpoint=current_endpoint)
if training_role == "PSERVER":
current_endpoint = "127.0.0.1:1001"
pserver_prog = t.get_pserver_program(current_endpoint)
pserver_startup = t.get_startup_program(current_endpoint, pserver_prog)
......@@ -284,7 +284,7 @@ save_vars、save_params、save_persistables 以及 save_inference_model的区别
exe.run(pserver_prog)
if training_role == "TRAINER":
main_program = t.get_trainer_program()
exe.run(main_program)
exe.run(main_program)
上面的例子中,每个PServer通过调用HDFS的命令获取到0号trainer保存的参数,通过配置获取到PServer的 :code:`fluid.Program` ,PaddlePaddle Fluid会从此
:code:`fluid.Program` 也就是 :code:`pserver_startup` 的所有模型变量中找出长期变量,并通过指定的 :code:`path` 目录下一一加载。
......
......@@ -179,23 +179,23 @@ For the PServer to be loaded with parameters during training, for example:
exe = fluid.Executor(fluid.CPUPlace())
path = "./models"
pserver_endpoints = "127.0.0.1:1001,127.0.0.1:1002"
trainers = 4
Training_role == "PSERVER"
config = fluid.DistributeTranspilerConfig()
t = fluid.DistributeTranspiler(config=config)
t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers, sync_mode=True)
if training_role == "PSERVER":
current_endpoint = "127.0.0.1:1001"
pserver_prog = t.get_pserver_program(current_endpoint)
pserver_startup = t.get_startup_program(current_endpoint, pserver_prog)
exe.run(pserver_startup)
fluid.io.load_persistables(exe, path, pserver_startup)
exe.run(pserver_prog)
if training_role == "TRAINER":
main_program = t.get_trainer_program()
exe.run(main_program)
pserver_endpoints = "127.0.0.1:1001,127.0.0.1:1002"
trainers = 4
Training_role == "PSERVER"
current_endpoint = "127.0.0.1:1002"
config = fluid.DistributeTranspilerConfig()
t = fluid.DistributeTranspiler(config=config)
t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers, sync_mode=True, current_endpoint=current_endpoint)
if training_role == "PSERVER":
pserver_prog = t.get_pserver_program(current_endpoint)
pserver_startup = t.get_startup_program(current_endpoint, pserver_prog)
exe.run(pserver_startup)
fluid.io.load_persistables(exe, path, pserver_startup)
exe.run(pserver_prog)
if training_role == "TRAINER":
main_program = t.get_trainer_program()
exe.run(main_program)
In the above example, each PServer obtains the parameters saved by trainer 0 by calling the HDFS command, and obtains the PServer's :code:`fluid.Program` by configuration. PaddlePaddle Fluid will find all persistable variables in all model variables from this :code:`fluid.Program` , e.t. :code:`pserver_startup` , and load them from the specified :code:`path` directory.
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册