Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
FluidDoc
提交
bf4869d8
F
FluidDoc
项目概览
PaddlePaddle
/
FluidDoc
通知
5
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
23
列表
看板
标记
里程碑
合并请求
111
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
F
FluidDoc
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
23
Issue
23
列表
看板
标记
里程碑
合并请求
111
合并请求
111
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
bf4869d8
编写于
9月 25, 2019
作者:
A
Aurelius84
提交者:
GitHub
9月 25, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add param_attr example in embedding zh doc (#1358)
* add param_attr example * move example * refine code emxpale
上级
fe0eb057
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
31 addition
and
9 deletion
+31
-9
doc/fluid/api_cn/fluid_cn/embedding_cn.rst
doc/fluid/api_cn/fluid_cn/embedding_cn.rst
+15
-4
doc/fluid/api_cn/layers_cn/embedding_cn.rst
doc/fluid/api_cn/layers_cn/embedding_cn.rst
+16
-5
未找到文件。
doc/fluid/api_cn/fluid_cn/embedding_cn.rst
浏览文件 @
bf4869d8
...
...
@@ -52,11 +52,11 @@ embedding
参数:
- **input** (Variable) - 存储id信息,数据类型必须为:int64。
- **size** (tuple|list) - embedding矩阵的维度。必须包含两个元素,第一个元素为vocab_size(词表大小), 第二个为emb_size(embedding
层维度)。
- **is_sparse** (bool) - 是否使用稀疏的更新方式,这个参数只会影响反向的梯度更新的性能,sparse更新速度更快
。但某些optimizer不支持sparse更新,比如Adadelta
,此时is_sparse必须为False。默认为False。
- **size** (tuple|list) - embedding矩阵的维度。必须包含两个元素,第一个元素为vocab_size(词表大小), 第二个为emb_size(embedding层维度)。
- **is_sparse** (bool) - 是否使用稀疏的更新方式,这个参数只会影响反向的梯度更新的性能,sparse更新速度更快
,推荐使用稀疏更新的方式。但某些optimizer不支持sparse更新,比如 :ref:`cn_api_fluid_optimizer_AdadeltaOptimizer` 、 :ref:`cn_api_fluid_optimizer_AdamaxOptimizer` 、 :ref:`cn_api_fluid_optimizer_DecayedAdagradOptimizer` 、 :ref:`cn_api_fluid_optimizer_FtrlOptimizer` 、 :ref:`cn_api_fluid_optimizer_LambOptimizer` 、:ref:`cn_api_fluid_optimizer_LarsMomentumOptimizer`
,此时is_sparse必须为False。默认为False。
- **is_distributed** (bool) - 是否使用分布式的方式存储embedding矩阵,仅在多机分布式cpu训练中使用。默认为False。
- **padding_idx** (int|long|None) - padding_idx需在区间[-vocab_size, vocab_size),否则不生效,padding_idx<0时,padding_idx 会被改成 vocab_size + padding_idx,input中等于padding_index的id对应的embedding信息会被设置为0,且这部分填充数据在训练时将不会被更新。如果为none,不作处理,默认为None。
- **param_attr** (ParamAttr) - 指定权重参数属性的对象。默认值为None,表示使用默认的权重参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
- **param_attr** (ParamAttr) - 指定权重参数属性的对象。默认值为None,表示使用默认的权重参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
此外,可以通过 ``param_attr`` 参数加载用户自定义或预训练的词向量。只需将本地词向量转为numpy数据格式,且保证本地词向量的shape和embedding的 ``size`` 参数一致,然后使用 :ref:`cn_api_fluid_initializer_NumpyArrayInitializer` 进行初始化,即可实现加载自定义或预训练的词向量。详细使用方法见代码示例2。
- **dtype** (str|np.dtype|core.VarDesc.VarType) - 输出Tensor或LoDTensor的数据类型,数据类型必须为:float32,float64,默认为float32。
返回:input映射后embedding Tensor或LoDTensor,数据类型和dtype定义的类型一致。
...
...
@@ -69,7 +69,18 @@ embedding
import paddle.fluid as fluid
data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
emb = fluid.embedding(input=data, size=[128, 64])
# 示例 1
emb_1 = fluid.embedding(input=data, size=[128, 64])
# 示例 2: 加载用户自定义或预训练的词向量
weight_data = np.random.random(size=(128, 100)) # numpy格式的词向量数据
w_param_attrs = fluid.ParamAttr(
name="emb_weight",
learning_rate=0.5,
initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
trainable=True)
emb_2 = fluid.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')
...
...
doc/fluid/api_cn/layers_cn/embedding_cn.rst
浏览文件 @
bf4869d8
...
...
@@ -52,15 +52,15 @@ embedding
[0.945345345, 0.435394634, ..., 0.435345365],
[0.0, 0.0, ..., 0.0 ]] # padding data
输入的padding_idx = 0,则对于输入id为0的词,进行padding处理。
参数:
- **input** (Variable) - 存储id信息,数据类型必须为:int64,输入的shape最后一维须为1。
- **size** (tuple|list) - embedding矩阵的维度。必须包含两个元素,第一个元素为vocab_size(词表大小), 第二个为emb_size(embedding
层维度)。
- **is_sparse** (bool) - 是否使用稀疏的更新方式,这个参数只会影响反向的梯度更新的性能,sparse更新速度更快
。但某些optimizer不支持sparse更新,比如 :ref:`cn_api_fluid_optimizer_Adadelta
` ,此时is_sparse必须为False。默认为False。
- **size** (tuple|list) - embedding矩阵的维度。必须包含两个元素,第一个元素为vocab_size(词表大小), 第二个为emb_size(embedding层维度)。
- **is_sparse** (bool) - 是否使用稀疏的更新方式,这个参数只会影响反向的梯度更新的性能,sparse更新速度更快
,推荐使用稀疏更新的方式。但某些optimizer不支持sparse更新,比如 :ref:`cn_api_fluid_optimizer_AdadeltaOptimizer` 、 :ref:`cn_api_fluid_optimizer_AdamaxOptimizer` 、 :ref:`cn_api_fluid_optimizer_DecayedAdagradOptimizer` 、 :ref:`cn_api_fluid_optimizer_FtrlOptimizer` 、 :ref:`cn_api_fluid_optimizer_LambOptimizer` 、:ref:`cn_api_fluid_optimizer_LarsMomentumOptimizer
` ,此时is_sparse必须为False。默认为False。
- **is_distributed** (bool) - 是否使用分布式的方式存储embedding矩阵,仅在多机分布式cpu训练中使用。默认为False。
- **padding_idx** (int|long|None) - padding_idx需在区间[-vocab_size, vocab_size),否则不生效,padding_idx<0时,padding_idx会被改成vocab_size + padding_idx,input中等于padding_index的id对应的embedding信息会被设置为0,且这部分填充数据在训练时将不会被更新。如果为None,不作处理,默认为None。
- **param_attr** (ParamAttr) - 指定权重参数属性的对象。默认值为None,表示使用默认的权重参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
- **param_attr** (ParamAttr) - 指定权重参数属性的对象。默认值为None,表示使用默认的权重参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
此外,可以通过 ``param_attr`` 参数加载用户自定义或预训练的词向量。只需将本地词向量转为numpy数据格式,且保证本地词向量的shape和embedding的 ``size`` 参数一致,然后使用 :ref:`cn_api_fluid_initializer_NumpyArrayInitializer` 进行初始化,即可实现加载自定义或预训练的词向量。详细使用方法见代码示例2。
- **dtype** (str|np.dtype|core.VarDesc.VarType) - 输出Tensor或LoDTensor的数据类型,数据类型必须为:float32或float64,默认为float32。
返回:input映射后得到的Embedding Tensor或LoDTensor,数据类型和dtype定义的类型一致。
...
...
@@ -73,7 +73,18 @@ embedding
import paddle.fluid as fluid
data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
emb = fluid.layers.embedding(input=data, size=[128, 64])
# 示例 1
emb_1 = fluid.layers.embedding(input=data, size=[128, 64])
# 示例 2: 加载用户自定义或预训练的词向量
weight_data = np.random.random(size=(128, 100)) # numpy格式的词向量数据
w_param_attrs = fluid.ParamAttr(
name="emb_weight",
learning_rate=0.5,
initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
trainable=True)
emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录