未验证 提交 b545d7b3 编写于 作者: littletomatodonkey's avatar littletomatodonkey 提交者: GitHub

fix Initializer docs, test=develop (#1949)

上级 32d3940f
.. _cn_api_fluid_initializer_BilinearInitializer: .. _cn_api_fluid_initializer_BilinearInitializer:
BilinearInitializer BilinearInitializer
------------------------------- -------------------------------
.. py:class:: paddle.fluid.initializer.BilinearInitializer()) .. py:class:: paddle.fluid.initializer.BilinearInitializer())
该接口为参数初始化函数,用于转置卷积函数中,对输入进行上采样。用户通过任意整型因子放大shape为(B,C,H,W)的特征图。 该接口为参数初始化函数,用于转置卷积函数中,对输入进行上采样。用户通过任意整型因子放大shape为(B,C,H,W)的特征图。
返回:对象 返回:对象
用法如下: 用法如下:
**代码示例**: **代码示例**:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
import math import math
factor = 2 factor = 2
C = 2 C = 2
H = W = 32 B = 8
w_attr = fluid.ParamAttr( H = W = 32
learning_rate=0., w_attr = fluid.param_attr.ParamAttr(
regularizer=fluid.regularizer.L2Decay(0.), learning_rate=0.,
initializer=fluid.initializer.BilinearInitializer()) regularizer=fluid.regularizer.L2Decay(0.),
x = fluid.layers.data(name="data", shape=[4, H, W], initializer=fluid.initializer.Bilinear())
dtype="float32") x = fluid.data(name="data", shape=[B, 3, H, W],
conv_up = fluid.layers.conv2d_transpose( dtype="float32")
input=x, conv_up = fluid.layers.conv2d_transpose(
num_filters=C, input=x,
output_size=None, num_filters=C,
filter_size=2 * factor - factor % 2, output_size=None,
padding=int(math.ceil((factor - 1) / 2.)), filter_size=2 * factor - factor % 2,
stride=factor, padding=int(math.ceil((factor - 1) / 2.)),
groups=C, stride=factor,
param_attr=w_attr, groups=C,
bias_attr=False) param_attr=w_attr,
bias_attr=False)
上述代码实现的是将输入x(shape=[-1, 4, H, W])经过转置卷积得到shape=[-1, C, H*factor, W*factor]的输出,num_filters = C和groups = C 表示这是按通道转置的卷积函数,输出通道为C,转置卷积的groups为C。滤波器shape为(C,1,K,K),K为filter_size。该初始化函数为滤波器的每个通道设置(K,K)插值核。输出特征图的最终输出shape为(B,C,factor*H,factor*W)。注意学习率和权重衰减设为0,以便在训练过程中双线性插值的系数值保持不变
上述代码实现的是将输入x(shape=[-1, 4, H, W])经过转置卷积得到shape=[-1, C, H*factor, W*factor]的输出,num_filters = C和groups = C 表示这是按通道转置的卷积函数,输出通道为C,转置卷积的groups为C。滤波器shape为(C,1,K,K),K为filter_size。该初始化函数为滤波器的每个通道设置(K,K)插值核。输出特征图的最终输出shape为(B,C,factor*H,factor*W)。注意学习率和权重衰减设为0,以便在训练过程中双线性插值的系数值保持不变
...@@ -18,9 +18,9 @@ ConstantInitializer ...@@ -18,9 +18,9 @@ ConstantInitializer
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32") x = fluid.data(name="data", shape=[32, 32], dtype="float32")
fc = fluid.layers.fc(input=x, size=10, fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.ConstantInitializer(value=2.0)) param_attr=fluid.initializer.Constant(value=2.0))
......
.. _cn_api_fluid_initializer_TruncatedNormalInitializer: .. _cn_api_fluid_initializer_TruncatedNormalInitializer:
TruncatedNormalInitializer TruncatedNormalInitializer
------------------------------- -------------------------------
.. py:class:: paddle.fluid.initializer.TruncatedNormalInitializer(loc=0.0, scale=1.0, seed=0) .. py:class:: paddle.fluid.initializer.TruncatedNormalInitializer(loc=0.0, scale=1.0, seed=0)
Random Truncated Normal(高斯)分布初始化函数 Random Truncated Normal(高斯)分布初始化函数
参数: 参数:
- **loc** (float16|float32) - 正态分布的平均值 - **loc** (float16|float32) - 正态分布的平均值
- **scale** (float16|float32) - 正态分布的标准差 - **scale** (float16|float32) - 正态分布的标准差
- **seed** (int32) - 随机种子 - **seed** (int32) - 随机种子
返回:对象 返回:对象
**代码示例** **代码示例**
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[1], dtype='float32') x = fluid.data(name='x', shape=[None, 1], dtype='float32')
fc = fluid.layers.fc(input=x, size=10, fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0)) param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册