未验证 提交 b360aa16 编写于 作者: D Dong Daxiang 提交者: GitHub

Update fleet_api_howto_cn.rst

test=document_preview
上级 dc0a7938
# 使用FleetAPI进行分布式训练 使用FleetAPI进行分布式训练
==========================
FleetAPI 设计说明
-----------------
Fleet是PaddlePaddle分布式训练的高级API。Fleet的命名出自于PaddlePaddle,象征一个舰队中的多只双桨船协同工作。Fleet的设计在易用性和算法可扩展性方面做出了权衡。用户可以很容易从单机版的训练程序,通过添加几行代码切换到分布式训练程序。此外,分布式训练的算法也可以通过Fleet
API接口灵活定义。具体的设计原理可以参考\ `Fleet
API设计文档 <https://github.com/PaddlePaddle/Fleet/blob/develop/README.md>`__\ 。当前FleetAPI还处于paddle.fluid.incubate目录下,未来功能完备后会放到paddle.fluid目录中,欢迎持续关注。
## FleetAPI 设计说明 Fleet API快速上手示例
---------------------
Fleet是PaddlePaddle分布式训练的高级API。Fleet的命名出自于PaddlePaddle,象征一个舰队中的多只双桨船协同工作。Fleet的设计在易用性和算法可扩展性方面做出了权衡。用户可以很容易从单机版的训练程序,通过添加几行代码切换到分布式训练程序。此外,分布式训练的算法也可以通过Fleet API接口灵活定义。具体的设计原理可以参考[Fleet API设计文档](https://github.com/PaddlePaddle/Fleet/blob/develop/README.md)。当前FleetAPI还处于paddle.fluid.incubate目录下,未来功能完备后会放到paddle.fluid目录中,欢迎持续关注。 下面会针对Fleet
API最常见的两种使用场景,用一个模型做示例,目的是让用户有快速上手体验的模板。快速上手的示例源代码可以在\ `Fleet
Quick
Start <https://github.com/PaddlePaddle/Fleet/tree/develop/examples/quick-start>`__\ 找到。
假设我们定义MLP网络如下:
.. code:: python
## Fleet API快速上手示例 import paddle.fluid as fluid
下面会针对Fleet API最常见的两种使用场景,用一个模型做示例,目的是让用户有快速上手体验的模板。快速上手的示例源代码可以在[Fleet Quick Start](https://github.com/PaddlePaddle/Fleet/tree/develop/examples/quick-start)找到。 def mlp(input_x, input_y, hid_dim=128, label_dim=2):
fc_1 = fluid.layers.fc(input=input_x, size=hid_dim, act='tanh')
fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim, act='tanh')
prediction = fluid.layers.fc(input=[fc_2], size=label_dim, act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
avg_cost = fluid.layers.mean(x=cost)
return avg_cost
假设我们定义MLP网络如下: 定义一个在内存生成数据的Reader如下:
```python .. code:: python
import paddle.fluid as fluid
def mlp(input_x, input_y, hid_dim=128, label_dim=2): import numpy as np
fc_1 = fluid.layers.fc(input=input_x, size=hid_dim, act='tanh')
fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim, act='tanh')
prediction = fluid.layers.fc(input=[fc_2], size=label_dim, act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
avg_cost = fluid.layers.mean(x=cost)
return avg_cost
```
定义一个在内存生成数据的Reader如下: def gen_data():
return {"x": np.random.random(size=(128, 32)).astype('float32'),
"y": np.random.randint(2, size=(128, 1)).astype('int64')}
```python 单机Trainer定义
import numpy as np ^^^^^^^^^^^^^^^
def gen_data():
return {"x": np.random.random(size=(128, 32)).astype('float32'),
"y": np.random.randint(2, size=(128, 1)).astype('int64')}
```
#### 单机Trainer定义
```python
import paddle.fluid as fluid
from nets import mlp
from utils import gen_data
input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
cost = mlp(input_x, input_y) .. code:: python
optimizer = fluid.optimizer.SGD(learning_rate=0.01)
optimizer.minimize(cost)
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place) import paddle.fluid as fluid
exe.run(fluid.default_startup_program()) from nets import mlp
step = 1001 from utils import gen_data
for i in range(step):
cost_val = exe.run(feed=gen_data(), fetch_list=[cost.name])
print("step%d cost=%f" % (i, cost_val[0]))
```
#### Parameter Server训练方法 input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
参数服务器方法对于大规模数据,简单模型的并行训练非常适用,我们基于单机模型的定义给出其实用Parameter Server进行训练的示例如下: cost = mlp(input_x, input_y)
optimizer = fluid.optimizer.SGD(learning_rate=0.01)
optimizer.minimize(cost)
place = fluid.CUDAPlace(0)
```python exe = fluid.Executor(place)
import paddle.fluid as fluid exe.run(fluid.default_startup_program())
from nets import mlp step = 1001
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet for i in range(step):
from paddle.fluid.incubate.fleet.base import role_maker cost_val = exe.run(feed=gen_data(), fetch_list=[cost.name])
from utils import gen_data print("step%d cost=%f" % (i, cost_val[0]))
input_x = fluid.layers.data(name="x", shape=[32], dtype='float32') Parameter Server训练方法
input_y = fluid.layers.data(name="y", shape=[1], dtype='int64') ^^^^^^^^^^^^^^^^^^^^^^^^
cost = mlp(input_x, input_y) 参数服务器方法对于大规模数据,简单模型的并行训练非常适用,我们基于单机模型的定义给出其实用Parameter
optimizer = fluid.optimizer.SGD(learning_rate=0.01) Server进行训练的示例如下:
role = role_maker.PaddleCloudRoleMaker() .. code:: python
fleet.init(role)
optimizer = fleet.distributed_optimizer(optimizer)
optimizer.minimize(cost)
if fleet.is_server(): import paddle.fluid as fluid
fleet.init_server() from nets import mlp
fleet.run_server() from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
elif fleet.is_worker(): from paddle.fluid.incubate.fleet.base import role_maker
place = fluid.CPUPlace() from utils import gen_data
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
step = 1001
for i in range(step):
cost_val = exe.run(
program=fluid.default_main_program(),
feed=gen_data(),
fetch_list=[cost.name])
print("worker_index: %d, step%d cost = %f" %
(fleet.worker_index(), i, cost_val[0]))
```
input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
cost = mlp(input_x, input_y)
optimizer = fluid.optimizer.SGD(learning_rate=0.01)
#### Collective训练方法 role = role_maker.PaddleCloudRoleMaker()
fleet.init(role)
optimizer = fleet.distributed_optimizer(optimizer)
optimizer.minimize(cost)
if fleet.is_server():
fleet.init_server()
fleet.run_server()
elif fleet.is_worker():
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
step = 1001
for i in range(step):
cost_val = exe.run(
program=fluid.default_main_program(),
feed=gen_data(),
fetch_list=[cost.name])
print("worker_index: %d, step%d cost = %f" %
(fleet.worker_index(), i, cost_val[0]))
Collective训练方法
^^^^^^^^^^^^^^^^^^
collective
training通常在GPU多机多卡训练中使用,一般在复杂模型的训练中比较常见,我们基于上面的单机模型定义给出使用Collective方法进行分布式训练的示例如下:
.. code:: python
import paddle.fluid as fluid
from nets import mlp
from paddle.fluid.incubate.fleet.collective import fleet
from paddle.fluid.incubate.fleet.base import role_maker
from utils import gen_data
collective training通常在GPU多机多卡训练中使用,一般在复杂模型的训练中比较常见,我们基于上面的单机模型定义给出使用Collective方法进行分布式训练的示例如下: input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
```python cost = mlp(input_x, input_y)
import paddle.fluid as fluid optimizer = fluid.optimizer.SGD(learning_rate=0.01)
from nets import mlp role = role_maker.PaddleCloudRoleMaker(is_collective=True)
from paddle.fluid.incubate.fleet.collective import fleet fleet.init(role)
from paddle.fluid.incubate.fleet.base import role_maker
from utils import gen_data
input_x = fluid.layers.data(name="x", shape=[32], dtype='float32') optimizer = fleet.distributed_optimizer(optimizer)
input_y = fluid.layers.data(name="y", shape=[1], dtype='int64') optimizer.minimize(cost)
place = fluid.CUDAPlace(0)
cost = mlp(input_x, input_y) exe = fluid.Executor(place)
optimizer = fluid.optimizer.SGD(learning_rate=0.01) exe.run(fluid.default_startup_program())
role = role_maker.PaddleCloudRoleMaker(is_collective=True) step = 1001
fleet.init(role) for i in range(step):
cost_val = exe.run(
program=fluid.default_main_program(),
feed=gen_data(),
fetch_list=[cost.name])
print("worker_index: %d, step%d cost = %f" %
(fleet.worker_index(), i, cost_val[0]))
optimizer = fleet.distributed_optimizer(optimizer) 更多使用示例
optimizer.minimize(cost) ------------
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place) `点击率预估 <>`__
exe.run(fluid.default_startup_program())
step = 1001
for i in range(step):
cost_val = exe.run(
program=fluid.default_main_program(),
feed=gen_data(),
fetch_list=[cost.name])
print("worker_index: %d, step%d cost = %f" %
(fleet.worker_index(), i, cost_val[0]))
```
## 更多使用示例 `语义匹配 <>`__
[点击率预估]() `向量学习 <>`__
[语义匹配]() `基于Resnet50的图像分类 <>`__
[向量学习]() `基于Transformer的机器翻译 <>`__
[基于Resnet50的图像分类]() `基于Bert的语义表示学习 <>`__
[基于Transformer的机器翻译]() Fleet API相关的接口说明
-----------------------
[基于Bert的语义表示学习]() Fleet API接口
~~~~~~~~~~~~~
- init(role\_maker=None)
- fleet初始化,需要在使用fleet其他接口前先调用,用于定义多机的环境配置
- is\_worker()
- Parameter
Server训练中使用,判断当前节点是否是Worker节点,是则返回True,否则返回False
- is\_server(model\_dir=None)
- Parameter
Server训练中使用,判断当前节点是否是Server节点,是则返回True,否则返回False
- init\_server()
- Parameter
Server训练中,fleet加载model\_dir中保存的模型相关参数进行parameter
server的初始化
- run\_server()
- Parameter Server训练中使用,用来启动server端服务
- init\_worker()
- Parameter Server训练中使用,用来启动worker端服务
- stop\_worker()
- 训练结束后,停止worker
- distributed\_optimizer(optimizer, strategy=None)
- 分布式优化算法装饰器,用户可带入单机optimizer,并配置分布式训练策略,返回一个分布式的optimizer
RoleMaker
~~~~~~~~~
## Fleet API相关的接口说明 - MPISymetricRoleMaker
### Fleet API接口 - 描述:MPISymetricRoleMaker会假设每个节点启动两个进程,1worker+1pserver,这种RoleMaker要求用户的集群上有mpi环境。
- init(role_maker=None) - 示例:
- fleet初始化,需要在使用fleet其他接口前先调用,用于定义多机的环境配置
- is_worker()
- Parameter Server训练中使用,判断当前节点是否是Worker节点,是则返回True,否则返回False
- is_server(model_dir=None)
- Parameter Server训练中使用,判断当前节点是否是Server节点,是则返回True,否则返回False
- init_server()
- Parameter Server训练中,fleet加载model_dir中保存的模型相关参数进行parameter server的初始化
- run_server()
- Parameter Server训练中使用,用来启动server端服务
- init_worker()
- Parameter Server训练中使用,用来启动worker端服务
- stop_worker()
- 训练结束后,停止worker
- distributed_optimizer(optimizer, strategy=None)
- 分布式优化算法装饰器,用户可带入单机optimizer,并配置分布式训练策略,返回一个分布式的optimizer
### RoleMaker .. code:: python
- MPISymetricRoleMaker from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.incubate.fleet.base import role_maker
- 描述:MPISymetricRoleMaker会假设每个节点启动两个进程,1worker+1pserver,这种RoleMaker要求用户的集群上有mpi环境。 role = role_maker.MPISymetricRoleMaker()
fleet.init(role)
- 示例 - 启动方法
```python .. code:: shell
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.incubate.fleet.base import role_maker
role = role_maker.MPISymetricRoleMaker()
fleet.init(role)
```
- 启动方法: mpirun -np 2 python trainer.py
```shell - PaddleCloudRoleMaker
mpirun -np 2 python trainer.py
```
- PaddleCloudRoleMaker - 描述:PaddleCloudRoleMaker是一个高级封装,支持使用paddle.distributed.launch或者paddle.distributed.launch\_ps启动脚本
- 描述:PaddleCloudRoleMaker是一个高级封装,支持使用paddle.distributed.launch或者paddle.distributed.launch_ps启动脚本 - Parameter Server训练示例:
- Parameter Server训练示例: .. code:: python
```python from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet from paddle.fluid.incubate.fleet.base import role_maker
from paddle.fluid.incubate.fleet.base import role_maker
role = role_maker.PaddleCloudRoleMaker()
fleet.init(role)
```
- 启动方法: role = role_maker.PaddleCloudRoleMaker()
fleet.init(role)
```python - 启动方法:
python -m paddle.distributed.launch_ps --worker_num 2 --server_num 2 trainer.py
```
- Collective训练示例: .. code:: python
```python python -m paddle.distributed.launch_ps --worker_num 2 --server_num 2 trainer.py
from paddle.fluid.incubate.fleet.collective import fleet
from paddle.fluid.incubate.fleet.base import role_maker
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
```
- 启动方法 - Collective训练示例
```python .. code:: python
python -m paddle.distributed.launch trainer.py
```
- UserDefinedRoleMaker from paddle.fluid.incubate.fleet.collective import fleet
from paddle.fluid.incubate.fleet.base import role_maker
- 描述:用户自定义节点的角色信息,IP和端口信息 role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
- 示例 - 启动方法
```python .. code:: python
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.incubate.fleet.base import role_maker python -m paddle.distributed.launch trainer.py
role = role_maker.UserDefinedRoleMaker( - UserDefinedRoleMaker
current_id=int(os.getenv("CURRENT_ID")),
role=role_maker.Role.WORKER if bool(int(os.getenv("IS_WORKER"))) - 描述:用户自定义节点的角色信息,IP和端口信息
else role_maker.Role.SERVER,
worker_num=int(os.getenv("WORKER_NUM")), - 示例:
server_endpoints=pserver_endpoints)
fleet.init(role) .. code:: python
```
### Strategy from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.incubate.fleet.base import role_maker
- Parameter Server Training role = role_maker.UserDefinedRoleMaker(
- Sync_mode current_id=int(os.getenv("CURRENT_ID")),
- Collective Training role=role_maker.Role.WORKER if bool(int(os.getenv("IS_WORKER")))
- LocalSGD else role_maker.Role.SERVER,
- ReduceGrad worker_num=int(os.getenv("WORKER_NUM")),
server_endpoints=pserver_endpoints)
fleet.init(role)
### Fleet Mode Strategy
~~~~~~~~
- Parameter Server Training - Parameter Server Training
- Sync\_mode
- Collective Training
- LocalSGD
- ReduceGrad
```python Fleet Mode
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet ~~~~~~~~~~
```
- Parameter Server Training
- Collective Training ``python from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet``
```python - Collective Training
from paddle.fluid.incubate.fleet.collective import fleet
```
``python from paddle.fluid.incubate.fleet.collective import fleet``
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册