未验证 提交 a0931327 编写于 作者: L LutaoChu 提交者: GitHub

Update the docs of nn.loss.L1Loss and nn.functional.l1_loss, test=develop (#2343)

Update the docs of nn.loss.L1Loss and nn.functional.l1_loss
上级 c6a474dc
......@@ -49,6 +49,7 @@ paddle.nn
nn/exponential_decay.rst
nn/filter_by_instag.rst
nn/fsp_matrix.rst
nn/functional.rst
nn/gather_tree.rst
nn/gelu.rst
nn/generate_mask_labels.rst
......@@ -67,6 +68,7 @@ paddle.nn
nn/huber_loss.rst
nn/image_resize.rst
nn/image_resize_short.rst
nn/initializer.rst
nn/inverse_time_decay.rst
nn/iou_similarity.rst
nn/kldiv_loss.rst
......@@ -83,23 +85,22 @@ paddle.nn
nn/loss.rst
nn/lrn.rst
nn/margin_rank_loss.rst
nn/matrix_nms.rst
nn/maxout.rst
nn/mse_loss.rst
nn/multiclass_nms.rst
nn/matrix_nms.rst
nn/natural_exp_decay.rst
nn/noam_decay.rst
nn/npair_loss.rst
nn/one_hot.rst
nn/pad.rst
nn/pad_constant_like.rst
nn/pad2d.rst
nn/pad_constant_like.rst
nn/ParameterList.rst
nn/piecewise_decay.rst
nn/pixel_shuffle.rst
nn/polygon_box_transform.rst
nn/polynomial_decay.rst
nn/pool2d.rst
nn/Pool2D.rst
nn/pool3d.rst
nn/prior_box.rst
......
==========
functional
==========
.. toctree::
:maxdepth: 1
functional/l1_loss.rst
.. _api_nn_functional_l1_loss:
l1_loss
------
.. autoclass:: paddle.nn.functional.l1_loss
:members:
:inherited-members:
:noindex:
......@@ -18,6 +18,7 @@ paddle.nn
nn_cn/Upsample_cn.rst
nn_cn/activation_cn.rst
nn_cn/loss_cn.rst
nn_cn/functional_cn.rst
nn_cn/adaptive_pool2d_cn.rst
nn_cn/adaptive_pool3d_cn.rst
nn_cn/add_position_encoding_cn.rst
......
=======================
functional
=======================
.. toctree::
:maxdepth: 1
functional_cn/l1_loss_cn.rst
l1_loss
-------------------------------
.. py:function:: paddle.nn.functional.l1_loss(x, label, reduction='mean', name=None)
该接口计算输入 ``x`` 和标签 ``label`` 间的 `L1 loss` 损失。
该损失函数的数学计算公式如下:
当 `reduction` 设置为 ``'none'`` 时,
.. math::
Out = \lvert x - label\rvert
当 `reduction` 设置为 ``'mean'`` 时,
.. math::
Out = MEAN(\lvert x - label\rvert)
当 `reduction` 设置为 ``'sum'`` 时,
.. math::
Out = SUM(\lvert x - label\rvert)
参数
:::::::::
- **x** (Tensor): - 输入的Tensor,维度是[N, *], 其中N是batch size, `*` 是任意数量的额外维度。数据类型为:float32、float64、int32、int64。
- **label** (Tensor): - 标签,维度是[N, *], 与 ``x`` 相同。数据类型为:float32、float64、int32、int64。
- **reduction** (str, 可选): - 指定应用于输出结果的计算方式,可选值有: ``'none'``, ``'mean'``, ``'sum'`` 。默认为 ``'mean'``,计算 `L1Loss` 的均值;设置为 ``'sum'`` 时,计算 `L1Loss` 的总和;设置为 ``'none'`` 时,则返回 `L1Loss`。
- **name** (str,可选): - 操作的名称(可选,默认值为None)。更多信息请参见 :ref:`api_guide_Name`。
返回
:::::::::
``Tensor``, 输入 ``x`` 和标签 ``label`` 间的 `L1 loss` 损失。如果 :attr:`reduction` 是 ``'none'``, 则输出Loss的维度为 [N, *], 与输入 ``x`` 相同。如果 :attr:`reduction` 是 ``'mean'`` 或 ``'sum'``, 则输出Loss的维度为 [1]。
代码示例
:::::::::
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32")
label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32")
x = paddle.to_variable(x_data)
label = paddle.to_variable(label_data)
l1_loss = paddle.nn.functional.l1_loss(x, label)
print(l1_loss.numpy())
# [0.35]
l1_loss = paddle.nn.functional.l1_loss(x, label, reduction='none')
print(l1_loss.numpy())
# [[0.20000005 0.19999999]
# [0.2 0.79999995]]
l1_loss = paddle.nn.functional.l1_loss(x, label, reduction='sum')
print(l1_loss.numpy())
# [1.4]
L1Loss
-------------------------------
.. py:function:: paddle.nn.loss.L1Loss(reduction='mean')
.. py:class:: paddle.nn.loss.L1Loss(reduction='mean', name=None)
该接口用于创建一个L1Loss的可调用类,L1Loss计算输入input和标签label间的 `L1 loss` 损失。
该接口用于创建一个L1Loss的可调用类,L1Loss计算输入x和标签label间的 `L1 loss` 损失。
该损失函数的数学计算公式如下:
当 `reduction` 设置为 ``'none'`` 时,
.. math::
Out = |input - label|
Out = \lvert x - label\rvert
当 `reduction` 设置为 ``'mean'`` 时,
.. math::
Out = MEAN(|input - label|)
Out = MEAN(\lvert x - label\rvert)
当 `reduction` 设置为 ``'sum'`` 时,
.. math::
Out = SUM(|input - label|)
Out = SUM(\lvert x - label\rvert)
输入input和标签label的维度是[N, *], 其中N是batch_size, `*` 是任意其他维度。
如果 :attr:`reduction` 是 ``'none'``, 则输出Loss的维度为 [N, *], 与输入input相同。
如果 :attr:`reduction` 是 ``'mean'`` 或 ``'sum'``, 则输出Loss的维度为 [1]。
参数:
- **reduction** (string, 可选): - 指定应用于输出结果的计算方式,可选值有: ``'none'``, ``'mean'``, ``'sum'`` 。默认为 ``'mean'``,计算 `L1Loss` 的均值;设置为 ``'sum'`` 时,计算 `L1Loss` 的总和;设置为 ``'none'`` 时,则返回L1Loss。数据类型为string。
参数
:::::::::
- **reduction** (str, 可选): - 指定应用于输出结果的计算方式,可选值有: ``'none'``, ``'mean'``, ``'sum'`` 。默认为 ``'mean'``,计算 `L1Loss` 的均值;设置为 ``'sum'`` 时,计算 `L1Loss` 的总和;设置为 ``'none'`` 时,则返回 `L1Loss`。
- **name** (str,可选): - 操作的名称(可选,默认值为None)。更多信息请参见 :ref:`api_guide_Name`。
返回:返回计算L1Loss的可调用对象。
形状
:::::::::
- **x** (Tensor): - 输入的Tensor,维度是[N, *], 其中N是batch size, `*` 是任意数量的额外维度。数据类型为:float32、float64、int32、int64。
- **label** (Tensor): - 标签,维度是[N, *], 与 ``x`` 相同。数据类型为:float32、float64、int32、int64。
- **output** (Tensor): - 输入 ``x`` 和标签 ``label`` 间的 `L1 loss` 损失。如果 :attr:`reduction` 是 ``'none'``, 则输出Loss的维度为 [N, *], 与输入 ``x`` 相同。如果 :attr:`reduction` 是 ``'mean'`` 或 ``'sum'``, 则输出Loss的维度为 [1]。
**代码示例**
代码示例
:::::::::
.. code-block:: python
# declarative mode
import paddle.fluid as fluid
import numpy as np
import paddle
input = fluid.data(name="input", shape=[1])
label = fluid.data(name="label", shape=[1])
l1_loss = paddle.nn.loss.L1Loss(reduction='mean')
output = l1_loss(input,label)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
input_data = np.array([1.5]).astype("float32")
label_data = np.array([1.7]).astype("float32")
output_data = exe.run(fluid.default_main_program(),
feed={"input":input_data, "label":label_data},
fetch_list=[output],
return_numpy=True)
print(output_data) # [array([0.2], dtype=float32)]
# imperative mode
import paddle.fluid.dygraph as dg
with dg.guard(place) as g:
input = dg.to_variable(input_data)
label = dg.to_variable(label_data)
l1_loss = paddle.nn.loss.L1Loss(reduction='mean')
output = l1_loss(input,label)
print(output.numpy()) # [0.2]
import numpy as np
paddle.disable_static()
x_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32")
label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32")
x = paddle.to_variable(x_data)
label = paddle.to_variable(label_data)
l1_loss = paddle.nn.loss.L1Loss()
output = l1_loss(x, label)
print(output.numpy())
# [0.35]
l1_loss = paddle.nn.loss.L1Loss(reduction='sum')
output = l1_loss(x, label)
print(output.numpy())
# [1.4]
l1_loss = paddle.nn.loss.L1Loss(reduction='none')
output = l1_loss(x, label)
print(output.numpy())
# [[0.20000005 0.19999999]
# [0.2 0.79999995]]
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册