Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
FluidDoc
提交
a05fe199
F
FluidDoc
项目概览
PaddlePaddle
/
FluidDoc
通知
7
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
23
列表
看板
标记
里程碑
合并请求
111
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
F
FluidDoc
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
23
Issue
23
列表
看板
标记
里程碑
合并请求
111
合并请求
111
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a05fe199
编写于
11月 08, 2019
作者:
L
LielinJiang
提交者:
whs
11月 08, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add locality_aware_nms op cn doc (#1581)
上级
66ba6db4
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
60 addition
and
0 deletion
+60
-0
doc/fluid/api_cn/layers_cn/locality_aware_nms_cn.rst
doc/fluid/api_cn/layers_cn/locality_aware_nms_cn.rst
+60
-0
未找到文件。
doc/fluid/api_cn/layers_cn/locality_aware_nms_cn.rst
0 → 100644
浏览文件 @
a05fe199
.. _cn_api_fluid_layers_locality_aware_nms:
locality_aware_nms
-------------------------------
.. py:function:: paddle.fluid.layers.locality_aware_nms(bboxes, scores, score_threshold, nms_top_k, keep_top_k, nms_threshold=0.3, normalized=True, nms_eta=1.0, background_label=-1, name=None)
**局部感知NMS**
`局部感知NMS <https://arxiv.org/abs/1704.03155>`_ 用于对边界框(bounding box)和评分(scores)执行局部感知非极大值抑制(LANMS)。
首先,根据边界框之间的IOU(交并比),对边界框和评分进行融合。
在NMS中,如果提供 ``score_threshold`` 阈值,则此OP贪心地选择所有得分(scores)高于 ``score_threshold`` 的检测边界框(bounding box)的子集,如果nms_top_k大于-1,则选择最大的nms_top_k置信度分数。 接着,该OP依据 adaptive nms(基于 ``nms_threshold`` 和 ``nms_eta``),删除与已选择的框IOU(交并比)高于nms_threshold 的重叠框。
在NMS步骤后,如果keep_top_k大于-1,则每个图像最多保留keep_top_k个框(bounding box)。
参数:
- **bboxes** (Variable) – 支持两种类型的边界框(bounding box):
1. (Tensor)形为[N,M,4 或 8、16、24、32]的3-D张量,表示将预测M个边界框的预测位置, N是批大小(batch size)。当边界框(bounding box)大小等于4时,每个边界框有四个坐标值,布局为 :math:`[xmin, ymin, xmax, ymax]` 。数据类型为float32或float64。
- **scores** (Variable) – 支持两种类型的分数:
1. (Tensor)具有形状 :math:`[N, C, M]` 的3-D张量表示预测的置信度。 N是批量大小 batch size,C是种类数目,M是边界框bounding box的数量。目前仅支持单个类别,所以输入维度应为 :math:`[N, 1, M]` 。请注意,M等于bboxes的第二维。数据类型为float32或float64。
- **background_label** (int) – 背景标签(类别)的索引,如果设置为 0 ,则忽略背景标签(类别)。如果设置为 -1 ,则考虑所有类别。默认值:-1
- **score_threshold** (float) – 过滤掉低置信度分数的边界框的阈值。如果没有提供,请考虑所有边界框。
- **nms_top_k** (int) – 基于 score_threshold 的过滤检测后,根据置信度保留的最大检测次数。
- **nms_threshold** (float) – 在LANMS中用于融合检测框和剔除检测框IOU的阈值,默认值:0.3 。
- **nms_eta** (float) – 在NMS中用于调整 nms_threshold 的参数,设为1时表示nms_threshold不变。默认值:1.0 。
- **keep_top_k** (int) – NMS步骤后每个图像要保留的总bbox数。 -1表示在NMS步骤之后保留所有bbox。
- **normalized** (bool) – 检测是否已经经过正则化。默认值:True 。
- **name** (str|None) – 具体用法请参见 :ref:`api_guide_Name` ,一般无需设置,默认值为None。
返回:形为[No,6]的2-D LoDTensor,表示检测(detections)结果。每行有6个值:[标签label,置信度confidence,xmin,ymin,xmax,ymax]。或形为[No,10]的2-D LoDTensor,用来表示检测结果。 每行有10个值:[标签label,置信度confidence,x1,y1,x2,y2,x3,y3,x4,y4]。 No是检测的总数。 如果对所有图像都没有检测到的box,则lod将设置为{1},而Out仅包含一个值-1。 (1.3版本之后,当未检测到box时,lod从{0}更改为{1})
返回类型:Variable,数据类型与输入一致。
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
boxes = fluid.data(name='bboxes', shape=[None, 81, 8],
dtype='float32')
scores = fluid.data(name='scores', shape=[None, 1, 81],
dtype='float32')
out = fluid.layers.locality_aware_nms(bboxes=boxes,
scores=scores,
score_threshold=0.5,
nms_top_k=400,
nms_threshold=0.3,
keep_top_k=200,
normalized=False)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录