提交 9fc11f6f 编写于 作者: D dengkaipeng

update example code. test=develop

上级 4f6c833d
......@@ -37,7 +37,10 @@ DataLoader当前仅支持 ``map-style`` 的数据集(可通过下标索引样本
.. code-block:: python
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.io import Dataset, BatchSampler, DataLoader
......@@ -48,7 +51,7 @@ DataLoader当前仅支持 ``map-style`` 的数据集(可通过下标索引样本
IMAGE_SIZE = 784
CLASS_NUM = 10
USE_GPU = True # whether use GPU to run model
USE_GPU = False # whether use GPU to run model
# define a random dataset
class RandomDataset(Dataset):
......@@ -63,11 +66,48 @@ DataLoader当前仅支持 ``map-style`` 的数据集(可通过下标索引样本
def __len__(self):
return self.num_samples
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
# get places
places = fluid.cuda_places() if USE_GPU else fluid.cpu_places()
# --------------------- dygraph mode --------------------
class SimpleNet(fluid.dygraph.Layer):
def __init__(self):
super(SimpleNet, self).__init__()
self.fc = fluid.dygraph.nn.Linear(IMAGE_SIZE, CLASS_NUM, act='softmax')
def forward(self, image, label=None):
return self.fc(image)
with fluid.dygraph.guard(places[0]):
simple_net = SimpleNet()
opt = fluid.optimizer.SGD(learning_rate=1e-3,
parameter_list=simple_net.parameters())
loader = DataLoader(dataset,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=2)
for e in range(EPOCH_NUM):
for i, (image, label) in enumerate(loader()):
out = simple_net(image)
loss = fluid.layers.cross_entropy(out, label)
avg_loss = fluid.layers.reduce_mean(loss)
avg_loss.backward()
opt.minimize(avg_loss)
simple_net.clear_gradients()
print("Epoch {} batch {}: loss = {}".format(e, i, np.mean(loss.numpy())))
# -------------------------------------------------------
# -------------------- static graph ---------------------
paddle.enable_static()
def simple_net(image, label):
fc_tmp = fluid.layers.fc(image, size=CLASS_NUM, act='softmax')
cross_entropy = fluid.layers.softmax_with_cross_entropy(image, label)
......@@ -86,11 +126,8 @@ DataLoader当前仅支持 ``map-style`` 的数据集(可通过下标索引样本
prog = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(loss_name=loss.name)
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
loader = DataLoader(dataset,
feed_list=[image, label],
places=places,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
......@@ -102,41 +139,6 @@ DataLoader当前仅支持 ``map-style`` 的数据集(可通过下标索引样本
print("Epoch {} batch {}: loss = {}".format(e, i, l[0][0]))
# -------------------------------------------------------
# -------------------- dynamic graph --------------------
class SimpleNet(fluid.dygraph.Layer):
def __init__(self):
super(SimpleNet, self).__init__()
self.fc = fluid.dygraph.nn.Linear(IMAGE_SIZE, CLASS_NUM, act='softmax')
def forward(self, image, label=None):
return self.fc(image)
with fluid.dygraph.guard(places[0]):
simple_net = SimpleNet()
opt = fluid.optimizer.SGD(learning_rate=1e-3,
parameter_list=simple_net.parameters())
loader = DataLoader(dataset,
places=places[0],
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=2)
for e in range(EPOCH_NUM):
for i, (image, label) in enumerate(loader()):
out = simple_net(image)
loss = fluid.layers.cross_entropy(out, label)
avg_loss = fluid.layers.reduce_mean(loss)
avg_loss.backward()
opt.minimize(avg_loss)
simple_net.clear_gradients()
print("Epoch {} batch {}: loss = {}".format(e, i, np.mean(loss.numpy())))
# -------------------------------------------------------
.. py:method:: from_generator(feed_list=None, capacity=None, use_double_buffer=True, iterable=True, return_list=False, use_multiprocess=False, drop_last=True)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册