Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
FluidDoc
提交
99e584ed
F
FluidDoc
项目概览
PaddlePaddle
/
FluidDoc
通知
7
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
23
列表
看板
标记
里程碑
合并请求
111
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
F
FluidDoc
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
23
Issue
23
列表
看板
标记
里程碑
合并请求
111
合并请求
111
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
99e584ed
编写于
4月 08, 2020
作者:
L
Leo Chen
提交者:
GitHub
4月 08, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update prune doc, test=develop (#1956)
上级
7131ab5f
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
14 addition
and
14 deletion
+14
-14
doc/fluid/api_cn/executor_cn/Executor_cn.rst
doc/fluid/api_cn/executor_cn/Executor_cn.rst
+1
-0
doc/fluid/api_cn/optimizer_cn/AdadeltaOptimizer_cn.rst
doc/fluid/api_cn/optimizer_cn/AdadeltaOptimizer_cn.rst
+1
-1
doc/fluid/api_cn/optimizer_cn/AdagradOptimizer_cn.rst
doc/fluid/api_cn/optimizer_cn/AdagradOptimizer_cn.rst
+1
-1
doc/fluid/api_cn/optimizer_cn/AdamOptimizer_cn.rst
doc/fluid/api_cn/optimizer_cn/AdamOptimizer_cn.rst
+1
-1
doc/fluid/api_cn/optimizer_cn/AdamaxOptimizer_cn.rst
doc/fluid/api_cn/optimizer_cn/AdamaxOptimizer_cn.rst
+1
-1
doc/fluid/api_cn/optimizer_cn/DGCMomentumOptimizer_cn.rst
doc/fluid/api_cn/optimizer_cn/DGCMomentumOptimizer_cn.rst
+1
-1
doc/fluid/api_cn/optimizer_cn/DecayedAdagradOptimizer_cn.rst
doc/fluid/api_cn/optimizer_cn/DecayedAdagradOptimizer_cn.rst
+1
-1
doc/fluid/api_cn/optimizer_cn/DpsgdOptimizer_cn.rst
doc/fluid/api_cn/optimizer_cn/DpsgdOptimizer_cn.rst
+1
-1
doc/fluid/api_cn/optimizer_cn/FtrlOptimizer_cn.rst
doc/fluid/api_cn/optimizer_cn/FtrlOptimizer_cn.rst
+1
-1
doc/fluid/api_cn/optimizer_cn/LambOptimizer_cn.rst
doc/fluid/api_cn/optimizer_cn/LambOptimizer_cn.rst
+1
-1
doc/fluid/api_cn/optimizer_cn/LarsMomentumOptimizer_cn.rst
doc/fluid/api_cn/optimizer_cn/LarsMomentumOptimizer_cn.rst
+1
-1
doc/fluid/api_cn/optimizer_cn/MomentumOptimizer_cn.rst
doc/fluid/api_cn/optimizer_cn/MomentumOptimizer_cn.rst
+1
-1
doc/fluid/api_cn/optimizer_cn/RMSPropOptimizer_cn.rst
doc/fluid/api_cn/optimizer_cn/RMSPropOptimizer_cn.rst
+1
-1
doc/fluid/api_cn/optimizer_cn/SGDOptimizer_cn.rst
doc/fluid/api_cn/optimizer_cn/SGDOptimizer_cn.rst
+1
-2
未找到文件。
doc/fluid/api_cn/executor_cn/Executor_cn.rst
浏览文件 @
99e584ed
...
...
@@ -96,6 +96,7 @@ Executor支持单GPU、多GPU以及CPU运行。在Executor构造时,需要传
- **scope** (Scope) – 该参数表示执行当前program所使用的作用域,用户可以为不同的program指定不同的作用域。默认值:fluid.global_scope()。
- **return_numpy** (bool) – 该参数表示是否将返回返回的计算结果(fetch list中指定的变量)转化为numpy;如果为False,则每个变量返回的类型为LoDTensor,否则返回变量的类型为numpy.ndarray。默认为:True。
- **use_program_cache** (bool) – 该参数表示是否对输入的Program进行缓存。如果该参数为True,在以下情况时,模型运行速度可能会更快:输入的program为 ``fluid.Program`` ,并且模型运行过程中,调用该接口的参数(program、 feed变量名和fetch_list变量)名始终不变。默认为:False。
- **use_prune** (bool) – 该参数表示是否对输入的Program进行剪枝。如果该参数为True,输入的Program会在run之前根据 ``feed`` 和 ``fetch_list`` 进行剪枝,剪枝的逻辑是将产生 ``feed`` 的 ``Variable`` 和 ``Operator`` 以及不产生 ``fetch_list`` 的 ``Variable`` 和 ``Operator`` 进行裁剪。默认为:False,表示不进行剪枝。请注意,如果将 ``Optimizer.minimize()`` 方法返回的 ``tuple`` 传入 ``fetch_list`` 中,则 ``use_prune`` 会被重写为True,并且会开启剪枝。
返回:返回fetch_list中指定的变量值
...
...
doc/fluid/api_cn/optimizer_cn/AdadeltaOptimizer_cn.rst
浏览文件 @
99e584ed
...
...
@@ -54,7 +54,7 @@ Adadelta优化器,具体细节可参考论文 `ADADELTA: AN ADAPTIVE LEARNING
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。
返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。
该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
返回类型: tuple
...
...
doc/fluid/api_cn/optimizer_cn/AdagradOptimizer_cn.rst
浏览文件 @
99e584ed
...
...
@@ -64,7 +64,7 @@ Adaptive Gradient 优化器(自适应梯度优化器,简称Adagrad)可以针
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回
: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
返回
: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
返回类型: tuple
...
...
doc/fluid/api_cn/optimizer_cn/AdamOptimizer_cn.rst
浏览文件 @
99e584ed
...
...
@@ -134,7 +134,7 @@ Adam优化器出自 `Adam论文 <https://arxiv.org/abs/1412.6980>`_ 的第二节
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回
: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
返回
: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
返回类型: tuple
...
...
doc/fluid/api_cn/optimizer_cn/AdamaxOptimizer_cn.rst
浏览文件 @
99e584ed
...
...
@@ -78,7 +78,7 @@ Adamax优化器是参考 `Adam论文 <https://arxiv.org/abs/1412.6980>`_ 第7节
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回
: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
返回
: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
**代码示例**:
...
...
doc/fluid/api_cn/optimizer_cn/DGCMomentumOptimizer_cn.rst
浏览文件 @
99e584ed
...
...
@@ -124,7 +124,7 @@ DGC还使用动量因子掩藏(momentum factor masking)和预训练(warm-u
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回
: (optimize_ops, params_grads),分别为附加的算子列表;一个由(param, grad) 变量对组成的列表,用于优化
返回
: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
返回类型: tuple
doc/fluid/api_cn/optimizer_cn/DecayedAdagradOptimizer_cn.rst
浏览文件 @
99e584ed
...
...
@@ -58,7 +58,7 @@ Decayed Adagrad优化器,可以看做是引入了衰减率的 `Adagrad <http:/
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回
: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
返回
: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
返回类型: tuple
...
...
doc/fluid/api_cn/optimizer_cn/DpsgdOptimizer_cn.rst
浏览文件 @
99e584ed
...
...
@@ -66,7 +66,7 @@ Dpsgd优化器是参考CCS16论文 `《Deep Learning with Differential Privacy
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回
: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
返回
: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
**代码示例**:
...
...
doc/fluid/api_cn/optimizer_cn/FtrlOptimizer_cn.rst
浏览文件 @
99e584ed
...
...
@@ -90,7 +90,7 @@ FTRL 原始论文: ( `https://www.eecs.tufts.edu/~dsculley/papers/ad-click-predi
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回
: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
返回
: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
返回类型: tuple
...
...
doc/fluid/api_cn/optimizer_cn/LambOptimizer_cn.rst
浏览文件 @
99e584ed
...
...
@@ -66,7 +66,7 @@ Deep Learning: Training BERT in 76 minutes <https://arxiv.org/pdf/1904.00962.pdf
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回
: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是 ``minimize()`` 接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
返回
: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
返回类型: tuple
...
...
doc/fluid/api_cn/optimizer_cn/LarsMomentumOptimizer_cn.rst
浏览文件 @
99e584ed
...
...
@@ -65,7 +65,7 @@ LarsMomentumOptimizer
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回
: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
返回
: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
返回类型: tuple
...
...
doc/fluid/api_cn/optimizer_cn/MomentumOptimizer_cn.rst
浏览文件 @
99e584ed
...
...
@@ -68,7 +68,7 @@ MomentumOptimizer
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回
: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
返回
: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
返回类型: tuple
...
...
doc/fluid/api_cn/optimizer_cn/RMSPropOptimizer_cn.rst
浏览文件 @
99e584ed
...
...
@@ -86,7 +86,7 @@ RMSPropOptimizer
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回
: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
返回
: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
返回类型: tuple
...
...
doc/fluid/api_cn/optimizer_cn/SGDOptimizer_cn.rst
浏览文件 @
99e584ed
...
...
@@ -63,8 +63,7 @@ SGDOptimizer
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
返回类型: tuple
**代码示例**
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录