未验证 提交 5a2be87f 编写于 作者: L LielinJiang 提交者: GitHub

Update 2.0 api doc including conv and kl loss (#2487)

* update conv kl-loss doc
上级 bd91e1e0
......@@ -33,10 +33,10 @@ paddle.nn
nn/ConstantPad2d.rst
nn/ConstantPad3d.rst
nn/continuous_value_model.rst
nn/conv2d.rst
nn/conv2d_transpose.rst
nn/conv3d.rst
nn/conv3d_transpose.rst
nn/Conv2d.rst
nn/Conv3d.rst
nn/ConvTranspose2d.rst
nn/ConvTranspose3d.rst
nn/cosine_decay.rst
nn/cosine_similarity.rst
nn/CosineSimilarity.rst
......
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_nn_layer_conv_Conv2d:
Conv2d
------
.. autoclass:: paddle.nn.layer.conv.Conv2d
:members:
:inherited-members:
:noindex:
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_nn_layer_conv_Conv3d:
Conv3d
------
.. autoclass:: paddle.nn.layer.conv.Conv3d
:members:
:inherited-members:
:noindex:
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_nn_layer_conv_ConvTranspose2d:
ConvTranspose2d
---------------
.. autoclass:: paddle.nn.layer.conv.ConvTranspose2d
:members:
:inherited-members:
:noindex:
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_nn_layer_conv_ConvTranspose3d:
ConvTranspose3d
---------------
.. autoclass:: paddle.nn.layer.conv.ConvTranspose3d
:members:
:inherited-members:
:noindex:
.. _api_nn_conv2d:
conv2d
-------------------------------
:doc_source: paddle.fluid.layers.conv2d
.. _api_nn_conv2d_transpose:
conv2d_transpose
-------------------------------
:doc_source: paddle.fluid.layers.conv2d_transpose
.. _api_nn_conv3d:
conv3d
-------------------------------
:doc_source: paddle.fluid.layers.conv3d
.. _api_nn_conv3d_transpose:
conv3d_transpose
-------------------------------
:doc_source: paddle.fluid.layers.conv3d_transpose
......@@ -9,8 +9,13 @@ functional
functional/l1_loss.rst
functional/nll_loss.rst
functional/mse_loss.rst
functional/kl_div.rst
functional/one_hot.rst
functional/ctc_loss.rst
functional/adaptive_avg_pool2d.rst
functional/adaptive_avg_pool3d.rst
functional/conv2d.rst
functional/conv3d.rst
functional/conv_transpose2d.rst
functional/conv_transpose3d.rst
functional/bilinear.rst
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_nn_functional_conv_conv2d:
conv2d
------
.. autofunction:: paddle.nn.functional.conv.conv2d
:noindex:
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_nn_functional_conv_conv3d:
conv3d
------
.. autofunction:: paddle.nn.functional.conv.conv3d
:noindex:
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_nn_functional_conv_conv_transpose2d:
conv_transpose2d
----------------
.. autofunction:: paddle.nn.functional.conv.conv_transpose2d
:noindex:
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_nn_functional_conv_conv_transpose3d:
conv_transpose3d
----------------
.. autofunction:: paddle.nn.functional.conv.conv_transpose3d
:noindex:
.. _api_nn_functional_kl_div:
kl_div
-------------------------------
.. autoclass:: paddle.nn.functional.kl_div
:members:
:inherited-members:
:noindex:
......@@ -11,5 +11,7 @@ loss
loss/L1Loss.rst
loss/MSELoss.rst
loss/NLLLoss.rst
loss/KLDivLoss.rst
loss/SmoothL1Loss.rst
loss/CTCLoss.rst
loss/KLDivLoss.rst
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_nn_loss_KLDivLoss:
KLDivLoss
-------------------------------
.. autoclass:: paddle.nn.loss.KLDivLoss
:members:
:inherited-members:
:noindex:
......@@ -8,8 +8,11 @@ paddle.nn
.. toctree::
:maxdepth: 1
nn_cn/Conv1D_cn.rst
nn_cn/Conv2D_cn.rst
nn_cn/Conv1d_cn.rst
nn_cn/Conv2d_cn.rst
nn_cn/Conv3d_cn.rst
nn_cn/ConvTranspose2d_cn.rst
nn_cn/ConvTranspose3d_cn.rst
nn_cn/diag_embed_cn.rst
nn_cn/interpolate_cn.rst
nn_cn/Linear_cn.rst
......
Conv2d
-------------------------------
.. py:class:: paddle.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', weight_attr=None, bias_attr=None, data_format="NCHW")
**二维卷积层**
该OP是二维卷积层(convolution2d layer),根据输入、卷积核、步长(stride)、填充(padding)、空洞大小(dilations)一组参数计算输出特征层大小。输入和输出是NCHW或NHWC格式,其中N是批尺寸,C是通道数,H是特征高度,W是特征宽度。卷积核是MCHW格式,M是输出图像通道数,C是输入图像通道数,H是卷积核高度,W是卷积核宽度。如果组数(groups)大于1,C等于输入图像通道数除以组数的结果。详情请参考UFLDL's : `卷积 <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ 。如果bias_attr不为False,卷积计算会添加偏置项。
对每个输入X,有等式:
.. math::
Out = \sigma \left ( W * X + b \right )
其中:
- :math:`X` :输入值,NCHW或NHWC格式的4-D Tensor
- :math:`W` :卷积核值,MCHW格式的4-D Tensor
- :math:`*` :卷积操作
- :math:`b` :偏置值,2-D Tensor,形状为 ``[M,1]``
- :math:`\sigma` :激活函数
- :math:`Out` :输出值,NCHW或NHWC格式的4-D Tensor, 和 ``X`` 的形状可能不同
参数:
- **in_channels** (int) - 输入图像的通道数。
- **out_channels** (int) - 由卷积操作产生的输出的通道数。
- **kernel_size** (int|list|tuple) - 卷积核大小。可以为单个整数或包含两个整数的元组或列表,分别表示卷积核的高和宽。如果为单个整数,表示卷积核的高和宽都等于该整数。
- **stride** (int|list|tuple,可选) - 步长大小。可以为单个整数或包含两个整数的元组或列表,分别表示卷积沿着高和宽的步长。如果为单个整数,表示沿着高和宽的步长都等于该整数。默认值:1。
- **padding** (int|list|tuple|str,可选) - 填充大小。如果它是一个字符串,可以是"VALID"或者"SAME",表示填充算法,计算细节可参考上述 ``padding`` = "SAME"或 ``padding`` = "VALID" 时的计算公式。如果它是一个元组或列表,它可以有3种格式:(1)包含4个二元组:当 ``data_format`` 为"NCHW"时为 [[0,0], [0,0], [padding_height_top, padding_height_bottom], [padding_width_left, padding_width_right]],当 ``data_format`` 为"NHWC"时为[[0,0], [padding_height_top, padding_height_bottom], [padding_width_left, padding_width_right], [0,0]];(2)包含4个整数值:[padding_height_top, padding_height_bottom, padding_width_left, padding_width_right];(3)包含2个整数值:[padding_height, padding_width],此时padding_height_top = padding_height_bottom = padding_height, padding_width_left = padding_width_right = padding_width。若为一个整数,padding_height = padding_width = padding。默认值:0。
- **dilation** (int|list|tuple,可选) - 空洞大小。可以为单个整数或包含两个整数的元组或列表,分别表示卷积核中的元素沿着高和宽的空洞。如果为单个整数,表示高和宽的空洞都等于该整数。默认值:1。
- **groups** (int,可选) - 二维卷积层的组数。根据Alex Krizhevsky的深度卷积神经网络(CNN)论文中的成组卷积:当group=n,输入和卷积核分别根据通道数量平均分为n组,第一组卷积核和第一组输入进行卷积计算,第二组卷积核和第二组输入进行卷积计算,……,第n组卷积核和第n组输入进行卷积计算。默认值:1。
- **padding_mode** (str, 可选): 填充模式。 包括 ``'zeros'``, ``'reflect'``, ``'replicate'`` 或者 ``'circular'``. 默认值: ``'zeros'`` .
- **weight_attr** (ParamAttr,可选) - 指定权重参数属性的对象。默认值为None,表示使用默认的权重参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
- **bias_attr** (ParamAttr|bool,可选)- 指定偏置参数属性的对象。若 ``bias_attr`` 为bool类型,只支持为False,表示没有偏置参数。默认值为None,表示使用默认的偏置参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
- **data_format** (str,可选) - 指定输入的数据格式,输出的数据格式将与输入保持一致,可以是"NCHW"和"NHWC"。N是批尺寸,C是通道数,H是特征高度,W是特征宽度。默认值:"NCHW"。
属性
::::::::::::
.. py:attribute:: weight
本层的可学习参数,类型为 ``Parameter``
.. py:attribute:: bias
本层的可学习偏置,类型为 ``Parameter``
形状:
- 输入: :math:`(N, C_{in}, H_{in}, W_{in})`
- 输出: :math:`(N, C_{out}, H_{out}, W_{out})`
其中:
.. math::
H_{out} = \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
W_{out} = \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
如果 ``padding`` = "SAME":
.. math::
H_{out} = \frac{(H_{in} + stride[0] - 1)}{stride[0]}
.. math::
W_{out} = \frac{(W_{in} + stride[1] - 1)}{stride[1]}
如果 ``padding`` = "VALID":
.. math::
H_{out} = \frac{\left ( H_{in} -\left ( dilation[0]*\left ( kernel\_size[0]-1 \right )+1 \right ) \right )}{stride[0]}+1
W_{out} = \frac{\left ( W_{in} -\left ( dilation[1]*\left ( kernel\_size[1]-1 \right )+1 \right ) \right )}{stride[1]}+1
抛出异常:
- ``ValueError`` - 如果 ``data_format`` 既不是"NCHW"也不是"NHWC"。
- ``ValueError`` - 如果 ``input`` 的通道数未被明确定义。
- ``ValueError`` - 如果 ``padding`` 是字符串,既不是"SAME"也不是"VALID"。
- ``ValueError`` - 如果 ``padding`` 含有4个二元组,与批尺寸对应维度的值不为0或者与通道对应维度的值不为0。
- ``ShapeError`` - 如果输入不是4-D Tensor。
- ``ShapeError`` - 如果输入和卷积核的维度大小不相同。
- ``ShapeError`` - 如果输入的维度大小与 ``stride`` 之差不是2。
- ``ShapeError`` - 如果输出的通道数不能被 ``groups`` 整除。
**代码示例**:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
x = np.random.uniform(-1, 1, (2, 4, 8, 8)).astype('float32')
paddle.disable_static()
x_var = paddle.to_tensor(x)
conv = nn.Conv2d(4, 6, (3, 3))
y_var = conv(x_var)
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 6, 6)
Conv3d
-------------------------------
.. py:class:: paddle.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', weight_attr=None, bias_attr=None, data_format="NCDHW")
**三维卷积层**
该OP是三维卷积层(convolution3D layer),根据输入、卷积核、步长(stride)、填充(padding)、空洞大小(dilations)一组参数计算得到输出特征层大小。输入和输出是NCDHW或NDWHC格式,其中N是批尺寸,C是通道数,D是特征层深度,H是特征层高度,W是特征层宽度。三维卷积(Convlution3D)和二维卷积(Convlution2D)相似,但多了一维深度信息(depth)。如果bias_attr不为False,卷积计算会添加偏置项。
对每个输入X,有等式:
.. math::
Out = \sigma \left ( W * X + b \right )
其中:
- :math:`X` :输入值,NCDHW或NDHWC格式的5-D Tensor
- :math:`W` :卷积核值,MCDHW格式的5-D Tensor
- :math:`*` :卷积操作
- :math:`b` :偏置值,2-D Tensor,形为 ``[M,1]``
- :math:`\sigma` :激活函数
- :math:`Out` :输出值, NCDHW或NDHWC格式的5-D Tensor,和 ``X`` 的形状可能不同
参数:
- **in_channels** (int) - 输入图像的通道数。
- **out_channels** (int) - 由卷积操作产生的输出的通道数。
- **kernel_size** (int|list|tuple) - 卷积核大小。可以为单个整数或包含三个整数的元组或列表,分别表示卷积核的深度,高和宽。如果为单个整数,表示卷积核的深度,高和宽都等于该整数。
- **stride** (int|list|tuple,可选) - 步长大小。可以为单个整数或包含三个整数的元组或列表,分别表示卷积沿着深度,高和宽的步长。如果为单个整数,表示沿着高和宽的步长都等于该整数。默认值:1。
- **padding** (int|list|tuple|str,可选) - 填充大小。如果它是一个字符串,可以是"VALID"或者"SAME",表示填充算法,计算细节可参考上述 ``padding`` = "SAME"或 ``padding`` = "VALID" 时的计算公式。如果它是一个元组或列表,它可以有3种格式:(1)包含5个二元组:当 ``data_format`` 为"NCDHW"时为 [[0,0], [0,0], [padding_depth_front, padding_depth_back], [padding_height_top, padding_height_bottom], [padding_width_left, padding_width_right]],当 ``data_format`` 为"NDHWC"时为[[0,0], [padding_depth_front, padding_depth_back], [padding_height_top, padding_height_bottom], [padding_width_left, padding_width_right], [0,0]];(2)包含6个整数值:[padding_depth_front, padding_depth_back, padding_height_top, padding_height_bottom, padding_width_left, padding_width_right];(3)包含3个整数值:[padding_depth, padding_height, padding_width],此时 padding_depth_front = padding_depth_back = padding_depth, padding_height_top = padding_height_bottom = padding_height, padding_width_left = padding_width_right = padding_width。若为一个整数,padding_depth = padding_height = padding_width = padding。默认值:0。
- **dilation** (int|list|tuple,可选) - 空洞大小。可以为单个整数或包含三个整数的元组或列表,分别表示卷积核中的元素沿着深度,高和宽的空洞。如果为单个整数,表示深度,高和宽的空洞都等于该整数。默认值:1。
- **groups** (int,可选) - 三维卷积层的组数。根据Alex Krizhevsky的深度卷积神经网络(CNN)论文中的成组卷积:当group=n,输入和卷积核分别根据通道数量平均分为n组,第一组卷积核和第一组输入进行卷积计算,第二组卷积核和第二组输入进行卷积计算,……,第n组卷积核和第n组输入进行卷积计算。默认值:1。
- **padding_mode** (str, 可选): 填充模式。 包括 ``'zeros'``, ``'reflect'``, ``'replicate'`` 或者 ``'circular'``. 默认值: ``'zeros'`` .
- **weight_attr** (ParamAttr,可选) - 指定权重参数属性的对象。默认值为None,表示使用默认的权重参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
- **bias_attr** (ParamAttr|bool,可选)- 指定偏置参数属性的对象。若 ``bias_attr`` 为bool类型,只支持为False,表示没有偏置参数。默认值为None,表示使用默认的偏置参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
- **data_format** (str,可选) - 指定输入的数据格式,输出的数据格式将与输入保持一致,可以是"NCDHW"和"NDHWC"。N是批尺寸,C是通道数,D是特征深度,H是特征高度,W是特征宽度。默认值:"NCDHW"。
属性
::::::::::::
.. py:attribute:: weight
本层的可学习参数,类型为 ``Parameter``
.. py:attribute:: bias
本层的可学习偏置,类型为 ``Parameter``
形状:
- 输入::math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
- 输出::math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
其中
.. math::
D_{out} &= \frac{\left ( D_{in} + padding\_depth\_front + padding\_depth\_back-\left ( dilation[0]*\left ( kernel\_size[0]-1 \right )+1 \right ) \right )}{stride[0]}+1
H_{out} &= \frac{\left ( H_{in} + padding\_height\_top + padding\_height\_bottom-\left ( dilation[1]*\left ( kernel\_size[1]-1 \right )+1 \right ) \right )}{stride[1]}+1
W_{out} &= \frac{\left ( W_{in} + padding\_width\_left + padding\_width\_right -\left ( dilation[2]*\left ( kernel\_size[2]-1 \right )+1 \right ) \right )}{stride[2]}+1
如果 ``padding`` = "SAME":
.. math::
D_{out} = \frac{(D_{in} + stride[0] - 1)}{stride[0]}
H_{out} = \frac{(H_{in} + stride[1] - 1)}{stride[1]}
W_{out} = \frac{(W_{in} + stride[2] - 1)}{stride[2]}
如果 ``padding`` = "VALID":
.. math::
D_{out} = \frac{\left ( D_{in} -\left ( dilation[0]*\left ( kernel\_size[0]-1 \right )+1 \right ) \right )}{stride[0]}+1
H_{out} = \frac{\left ( H_{in} -\left ( dilation[1]*\left ( kernel\_size[1]-1 \right )+1 \right ) \right )}{stride[1]}+1
W_{out} = \frac{\left ( W_{in} -\left ( dilation[2]*\left ( kernel\_size[2]-1 \right )+1 \right ) \right )}{stride[2]}+1
抛出异常:
- ``ValueError`` - 如果 ``data_format`` 既不是"NCDHW"也不是"NDHWC"。
- ``ValueError`` - 如果 ``input`` 的通道数未被明确定义。
- ``ValueError`` - 如果 ``padding`` 是字符串,既不是"SAME"也不是"VALID"。
- ``ValueError`` - 如果 ``padding`` 含有5个二元组,与批尺寸对应维度的值不为0或者与通道对应维度的值不为0。
- ``ShapeError`` - 如果输入不是5-D Tensor。
- ``ShapeError`` - 如果输入和卷积核的维度大小不相同。
- ``ShapeError`` - 如果输入的维度大小与 ``stride`` 之差不是2。
- ``ShapeError`` - 如果输出的通道数不能被 ``groups`` 整除。
**代码示例**:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
x = np.random.uniform(-1, 1, (2, 4, 8, 8, 8)).astype('float32')
paddle.disable_static()
x_var = paddle.to_tensor(x)
conv = nn.Conv3d(4, 6, (3, 3, 3))
y_var = conv(x_var)
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 6, 6, 6)
ConvTranspose2d
-------------------------------
.. py:class:: paddle.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, dilation=1, weight_attr=None, bias_attr=None, data_format="NCHW")
二维转置卷积层(Convlution2d transpose layer)
该层根据输入(input)、卷积核(kernel)和空洞大小(dilations)、步长(stride)、填充(padding)来计算输出特征层大小或者通过output_size指定输出特征层大小。输入(Input)和输出(Output)为NCHW或NHWC格式,其中N为批尺寸,C为通道数(channel),H为特征层高度,W为特征层宽度。卷积核是MCHW格式,M是输出图像通道数,C是输入图像通道数,H是卷积核高度,W是卷积核宽度。如果组数大于1,C等于输入图像通道数除以组数的结果。转置卷积的计算过程相当于卷积的反向计算。转置卷积又被称为反卷积(但其实并不是真正的反卷积)。欲了解转置卷积层细节,请参考下面的说明和 参考文献_ 。如果参数bias_attr不为False, 转置卷积计算会添加偏置项。
.. _参考文献: https://arxiv.org/pdf/1603.07285.pdf
输入 :math:`X` 和输出 :math:`Out` 函数关系如下:
.. math::
Out=\sigma (W*X+b)\\
其中:
- :math:`X` : 输入,具有NCHW或NHWC格式的4-D Tensor
- :math:`W` : 卷积核,具有NCHW格式的4-D Tensor
- :math:`*` : 卷积计算(注意:转置卷积本质上的计算还是卷积)
- :math:`b` : 偏置(bias),2-D Tensor,形状为 ``[M,1]``
- :math:`σ` : 激活函数
- :math:`Out` : 输出值,NCHW或NHWC格式的4-D Tensor, 和 ``X`` 的形状可能不同
注意:
如果output_size为None,则 :math:`H_{out}` = :math:`H^\prime_{out}` , :math:`W_{out}` = :math:`W^\prime_{out}` ;否则,指定的output_size_height(输出特征层的高) :math:`H_{out}` 应当介于 :math:`H^\prime_{out}` 和 :math:`H^\prime_{out} + strides[0]` 之间(不包含 :math:`H^\prime_{out} + strides[0]` ), 并且指定的output_size_width(输出特征层的宽) :math:`W_{out}` 应当介于 :math:`W^\prime_{out}` 和 :math:`W^\prime_{out} + strides[1]` 之间(不包含 :math:`W^\prime_{out} + strides[1]` )。
由于转置卷积可以当成是卷积的反向计算,而根据卷积的输入输出计算公式来说,不同大小的输入特征层可能对应着相同大小的输出特征层,所以对应到转置卷积来说,固定大小的输入特征层对应的输出特征层大小并不唯一。
如果指定了output_size, ``conv2d_transpose`` 可以自动计算卷积核的大小。
参数:
- **in_channels** (int) - 输入图像的通道数。
- **out_channels** (int) - 卷积核的个数,和输出特征图通道数相同。
- **kernel_size** (int|list|tuple) - 卷积核大小。可以为单个整数或包含两个整数的元组或列表,分别表示卷积核的高和宽。如果为单个整数,表示卷积核的高和宽都等于该整数。
- **stride** (int|tuple, 可选) - 步长大小。如果 ``stride`` 为元组或列表,则必须包含两个整型数,分别表示垂直和水平滑动步长。否则,表示垂直和水平滑动步长均为 ``stride`` 。默认值:1。
- **padding** (int|tuple, 可选) - 填充大小。如果 ``padding`` 为元组或列表,则必须包含两个整型数,分别表示竖直和水平边界填充大小。否则,表示竖直和水平边界填充大小均为 ``padding`` 。如果它是一个字符串,可以是"VALID"或者"SAME",表示填充算法,计算细节可参考下方形状 ``padding`` = "SAME"或 ``padding`` = "VALID" 时的计算公式。默认值:0。
- **output_padding** (int|list|tuple, optional): 输出形状上一侧额外添加的大小. 默认值: 0.
- **groups** (int, 可选) - 二维卷积层的组数。根据Alex Krizhevsky的深度卷积神经网络(CNN)论文中的分组卷积:当group=2,卷积核的前一半仅和输入特征图的前一半连接。卷积核的后一半仅和输入特征图的后一半连接。默认值:1。
- **dilation** (int|tuple, 可选) - 空洞大小。可以为单个整数或包含两个整数的元组或列表,分别表示卷积核中的元素沿着高和宽的空洞。如果为单个整数,表示高和宽的空洞都等于该整数。默认值:1。
- **weight_attr** (ParamAttr, 可选) - 指定权重参数属性的对象。默认值为None,表示使用默认的权重参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
- **bias_attr** (ParamAttr|bool, 可选) - 指定偏置参数属性的对象。默认值为None,表示使用默认的偏置参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
- **data_format** (str,可选) - 指定输入的数据格式,输出的数据格式将与输入保持一致,可以是"NCHW"和"NHWC"。N是批尺寸,C是通道数,H是特征高度,W是特征宽度。默认值:"NCHW"。
形状:
- 输入::math:`(N,C_{in}, H_{in}, W_{in})`
- 输出::math:`(N,C_{out}, H_{out}, W_{out})`
其中
.. math::
& H'_{out} = (H_{in}-1)*strides[0] - pad\_height\_top - pad\_height\_bottom + dilations[0]*(kernel\_size[0]-1)+1\\
& W'_{out} = (W_{in}-1)*strides[1]- pad\_width\_left - pad\_width\_right + dilations[1]*(kernel\_size[1]-1)+1 \\
& H_{out}\in[H'_{out},H'_{out} + strides[0])\\
& W_{out}\in[W'_{out},W'_{out} + strides[1])\\
如果 ``padding`` = "SAME":
.. math::
& H'_{out} = \frac{(H_{in} + stride[0] - 1)}{stride[0]}\\
& W'_{out} = \frac{(W_{in} + stride[1] - 1)}{stride[1]}\\
如果 ``padding`` = "VALID":
.. math::
& H'_{out} = (H_{in}-1)*strides[0] + dilations[0]*(kernel\_size[0]-1)+1\\
& W'_{out} = (W_{in}-1)*strides[1] + dilations[1]*(kernel\_size[1]-1)+1 \\
抛出异常:
- ``ValueError`` : 如果输入的shape、filter_size、stride、padding和groups不匹配,抛出ValueError
- ``ValueError`` - 如果 ``data_format`` 既不是"NCHW"也不是"NHWC"。
- ``ValueError`` - 如果 ``padding`` 是字符串,既不是"SAME"也不是"VALID"。
- ``ValueError`` - 如果 ``padding`` 含有4个二元组,与批尺寸对应维度的值不为0或者与通道对应维度的值不为0。
- ``ValueError`` - 如果 ``output_size`` 和 ``filter_size`` 同时为None。
- ``ShapeError`` - 如果输入不是4-D Tensor。
- ``ShapeError`` - 如果输入和卷积核的维度大小不相同。
- ``ShapeError`` - 如果输入的维度大小与 ``stride`` 之差不是2。
**代码示例**
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
x = np.random.uniform(-1, 1, (2, 4, 8, 8)).astype('float32')
paddle.disable_static()
x_var = paddle.to_tensor(x)
conv = nn.ConvTranspose2d(4, 6, (3, 3))
y_var = conv(x_var)
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 10, 10)
ConvTranspose3d
-------------------------------
.. py:class:: paddle.nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, dilation=1, weight_attr=None, bias_attr=None, data_format="NCDHW")
三维转置卷积层(Convlution3d transpose layer)
该层根据输入(input)、卷积核(kernel)和卷积核空洞大小(dilations)、步长(stride)、填充(padding)来计算输出特征层大小或者通过output_size指定输出特征层大小。输入(Input)和输出(Output)为NCDHW或者NDHWC格式。其中N为批尺寸,C为通道数(channel),D为特征深度,H为特征层高度,W为特征层宽度。转置卷积的计算过程相当于卷积的反向计算。转置卷积又被称为反卷积(但其实并不是真正的反卷积)。欲了解卷积转置层细节,请参考下面的说明和 参考文献_ 。如果参数bias_attr不为False, 转置卷积计算会添加偏置项。
.. _参考文献: http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf
输入 :math:`X` 和输出 :math:`Out` 函数关系如下:
.. math::
\\Out=\sigma (W*X+b)\\
其中:
- :math:`X` : 输入,具有NCDHW或NDHWC格式的5-D Tensor
- :math:`W` : 卷积核,具有NCDHW格式的5-D Tensor
- :math:`*` : 卷积操作(注意:转置卷积本质上的计算还是卷积)
- :math:`b` : 偏置(bias),2-D Tensor,形状为 ``[M,1]``
- :math:`σ` : 激活函数
- :math:`Out` : 输出值,NCDHW或NDHWC格式的5-D Tensor,和 ``X`` 的形状可能不同
注意:
如果output_size为None,则 :math:`H_{out}` = :math:`H^\prime_{out}` , :math:`W_{out}` = :math:`W^\prime_{out}` ;否则,指定的output_size_height(输出特征层的高) :math:`H_{out}` 应当介于 :math:`H^\prime_{out}` 和 :math:`H^\prime_{out} + strides[0]` 之间(不包含 :math:`H^\prime_{out} + strides[0]` ), 并且指定的output_size_width(输出特征层的宽) :math:`W_{out}` 应当介于 :math:`W^\prime_{out}` 和 :math:`W^\prime_{out} + strides[1]` 之间(不包含 :math:`W^\prime_{out} + strides[1]` )。
由于转置卷积可以当成是卷积的反向计算,而根据卷积的输入输出计算公式来说,不同大小的输入特征层可能对应着相同大小的输出特征层,所以对应到转置卷积来说,固定大小的输入特征层对应的输出特征层大小并不唯一。
如果指定了output_size, 该算子可以自动计算卷积核的大小。
参数:
- **in_channels** (int) - 输入图像的通道数。
- **out_channels** (int) - 卷积核的个数,和输出特征图个数相同。
- **kernel_size** (int|list|tuple) - 卷积核大小。可以为单个整数或包含三个整数的元组或列表,分别表示卷积核的深度,高和宽。如果为单个整数,表示卷积核的深度,高和宽都等于该整数。默认:None。output_size和kernel_size不能同时为None。
- **stride** (int|tuple, 可选) - 步长大小。如果 ``stride`` 为元组或列表,则必须包含三个整型数,分别表示深度,垂直和水平滑动步长。否则,表示深度,垂直和水平滑动步长均为 ``stride`` 。默认值:1。
- **padding** (int|tuple, 可选) - 填充大小。如果 ``padding`` 为元组或列表,则必须包含三个整型数,分别表示深度,竖直和水平边界填充大小。否则,表示深度,竖直和水平边界填充大小均为 ``padding`` 。如果它是一个字符串,可以是"VALID"或者"SAME",表示填充算法,计算细节可参考下方形状 ``padding`` = "SAME"或 ``padding`` = "VALID" 时的计算公式。默认值:0。
- **output_padding** (int|list|tuple, optional): 输出形状上一侧额外添加的大小. 默认值: 0.
- **groups** (int, 可选) - 二维卷积层的组数。根据Alex Krizhevsky的深度卷积神经网络(CNN)论文中的分组卷积:当group=2,卷积核的前一半仅和输入特征图的前一半连接。卷积核的后一半仅和输入特征图的后一半连接。默认值:1。
- **dilation** (int|tuple, 可选) - 空洞大小。可以为单个整数或包含三个整数的元组或列表,分别表示卷积核中的元素沿着深度,高和宽的空洞。如果为单个整数,表示深度,高和宽的空洞都等于该整数。默认值:1。
- **weight_attr** (ParamAttr, 可选) - 指定权重参数属性的对象。默认值为None,表示使用默认的权重参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
- **bias_attr** (ParamAttr|bool, 可选) - 指定偏置参数属性的对象。默认值为None,表示使用默认的偏置参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
- **data_format** (str,可选) - 指定输入的数据格式,输出的数据格式将与输入保持一致,可以是"NCHW"和"NHWC"。N是批尺寸,C是通道数,H是特征高度,W是特征宽度。默认值:"NCDHW"。
形状:
- 输入::math:`(N,C_{in}, H_{in}, W_{in})`
- 输出::math:`(N,C_{out}, H_{out}, W_{out})`
其中
.. math::
& D'_{out}=(D_{in}-1)*strides[0] - pad\_depth\_front - pad\_depth\_back + dilations[0]*(kernel\_size[0]-1)+1\\
& H'_{out} = (H_{in}-1)*strides[1] - pad\_height\_top - pad\_height\_bottom + dilations[1]*(kernel\_size[1]-1)+1\\
& W'_{out} = (W_{in}-1)*strides[2]- pad\_width\_left - pad\_width\_right + dilations[2]*(kernel\_size[2]-1)+1 \\
& D_{out}\in[D'_{out},D'_{out} + strides[0])\\
& H_{out}\in[H'_{out},H'_{out} + strides[1])\\
& W_{out}\in[W'_{out},W'_{out} + strides[2])\\
如果 ``padding`` = "SAME":
.. math::
& D'_{out} = \frac{(D_{in} + stride[0] - 1)}{stride[0]}\\
& H'_{out} = \frac{(H_{in} + stride[1] - 1)}{stride[1]}\\
& W'_{out} = \frac{(W_{in} + stride[2] - 1)}{stride[2]}\\
如果 ``padding`` = "VALID":
.. math::
& D'_{out} = (D_{in}-1)*strides[0] + dilations[0]*(kernel\_size[0]-1)+1\\
& H'_{out} = (H_{in}-1)*strides[1] + dilations[1]*(kernel\_size[1]-1)+1\\
& W'_{out} = (W_{in}-1)*strides[2] + dilations[2]*(kernel\_size[2]-1)+1 \\
抛出异常:
- ``ValueError`` : 如果输入的shape、kernel_size、stride、padding和groups不匹配,抛出ValueError
- ``ValueError`` - 如果 ``data_format`` 既不是"NCHW"也不是"NHWC"。
- ``ValueError`` - 如果 ``padding`` 是字符串,既不是"SAME"也不是"VALID"。
- ``ValueError`` - 如果 ``padding`` 含有4个二元组,与批尺寸对应维度的值不为0或者与通道对应维度的值不为0。
- ``ValueError`` - 如果 ``output_size`` 和 ``filter_size`` 同时为None。
- ``ShapeError`` - 如果输入不是4-D Tensor。
- ``ShapeError`` - 如果输入和卷积核的维度大小不相同。
- ``ShapeError`` - 如果输入的维度大小与 ``stride`` 之差不是2。
**代码示例**
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
x = np.random.uniform(-1, 1, (2, 4, 8, 8, 8)).astype('float32')
paddle.disable_static()
x_var = paddle.to_tensor(x)
conv = nn.ConvTranspose3d(4, 6, (3, 3, 3))
y_var = conv(x_var)
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 10, 10, 10)
.. _cn_api_nn_cn_conv2d_transpose:
conv2d_transpose
-------------------------------
:doc_source: paddle.fluid.layers.conv2d_transpose
.. _cn_api_nn_cn_conv3d:
conv3d
-------------------------------
:doc_source: paddle.fluid.layers.conv3d
.. _cn_api_nn_cn_conv3d_transpose:
conv3d_transpose
-------------------------------
:doc_source: paddle.fluid.layers.conv3d_transpose
......@@ -28,6 +28,11 @@ functional
functional_cn/mse_loss_cn.rst
functional_cn/adaptive_avg_pool2d_cn.rst
functional_cn/adaptive_avg_pool3d_cn.rst
functional_cn/kl_div_cn.rst
functional_cn/conv2d_cn.rst
functional_cn/conv3d_cn.rst
functional_cn/conv_transpose2d_cn.rst
functional_cn/conv_transpose3d_cn.rst
functional_cn/sigmoid_cn.rst
functional_cn/adaptive_avg_pool1d_cn.rst
functional_cn/adaptive_max_pool1d_cn.rst
......
Conv2D
conv2d
-------------------------------
.. py:class:: paddle.nn.Conv2d(num_channels, num_filters, filter_size, padding=0, stride=1, dilation=1, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None, name=None, data_format="NCHW", dtype="float32")
.. py:function:: paddle.nn.functional.conv2d(x, weight, bias=None, stride=1, padding=0, dilation=1, groups=1, data_format="NCHW", name=None)
:alias_main: paddle.nn.Conv2D
:alias: paddle.nn.Conv2D,paddle.nn.layer.Conv2D,paddle.nn.layer.conv.Conv2D
**二维卷积层**
该OP是二维卷积层(convolution2D layer),根据输入、滤波器、步长(stride)、填充(padding)、膨胀比例(dilations)一组参数计算输出特征层大小。输入和输出是NCHW或NHWC格式,其中N是批尺寸,C是通道数,H是特征高度,W是特征宽度。滤波器是MCHW格式,M是输出图像通道数,C是输入图像通道数,H是滤波器高度,W是滤波器宽度。如果组数(groups)大于1,C等于输入图像通道数除以组数的结果。详情请参考UFLDL's : `卷积 <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ 。如果bias_attr不为False,卷积计算会添加偏置项。如果指定了激活函数类型,相应的激活函数会作用在最终结果上。
该OP是二维卷积层(convolution2d layer),根据输入、卷积核、步长(stride)、填充(padding)、空洞大小(dilations)一组参数计算输出特征层大小。输入和输出是NCHW或NHWC格式,其中N是批尺寸,C是通道数,H是特征高度,W是特征宽度。卷积核是MCHW格式,M是输出图像通道数,C是输入图像通道数,H是卷积核高度,W是卷积核宽度。如果组数(groups)大于1,C等于输入图像通道数除以组数的结果。详情请参考UFLDL's : `卷积 <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ 。如果bias_attr不为False,卷积计算会添加偏置项。如果指定了激活函数类型,相应的激活函数会作用在最终结果上。
对每个输入X,有等式:
......@@ -20,7 +13,7 @@ Conv2D
其中:
- :math:`X` :输入值,NCHW或NHWC格式的4-D Tensor
- :math:`W` :滤波器值,MCHW格式的4-D Tensor
- :math:`W` :卷积核值,MCHW格式的4-D Tensor
- :math:`*` :卷积操作
- :math:`b` :偏置值,2-D Tensor,形状为 ``[M,1]``
- :math:`\sigma` :激活函数
......@@ -32,7 +25,7 @@ Conv2D
输入形状::math:`(N,C_{in},H_{in},W_{in})`
滤波器形状: :math:`(C_{out},C_{in},H_{f},W_{f})`
卷积核形状: :math:`(C_{out},C_{in},H_{f},W_{f})`
- 输出:
......@@ -61,41 +54,31 @@ Conv2D
W_{out} = \frac{\left ( W_{in} -\left ( dilation[1]*\left ( W_{f}-1 \right )+1 \right ) \right )}{stride[1]}+1
参数:
- **num_channels** (int) - 输入图像的通道数。
- **num_filters** (int) - 滤波器(卷积核)的个数。和输出图像通道相同。
- **filter_size** (int|list|tuple) - 滤波器大小。如果它是一个列表或元组,则必须包含两个整数值:(filter_size_height,filter_size_width)。若为一个整数,filter_size_height = filter_size_width = filter_size。
- **x** (Tensor) - 输入是形状为 :math:`[N, C, H, W]` 或 :math:`[N, H, W, C]` 的4-D Tensor,N是批尺寸,C是通道数,H是特征高度,W是特征宽度,数据类型为float16, float32或float64。
- **weight** (Tensor)) - 形状为 :math:`[M, C/g, kH, kW]` 的卷积核。 M是输出通道数, g是分组的个数,kH是卷积核的高度,kW是卷积核的宽度。
- **bias** (int|list|tuple) - 偏置项,形状为: :math:`[M,]` 。
- **stride** (int|list|tuple,可选) - 步长大小。卷积核和输入进行卷积计算时滑动的步长。如果它是一个列表或元组,则必须包含两个整型数:(stride_height,stride_width)。若为一个整数,stride_height = stride_width = stride。默认值:1。
- **padding** (int|list|tuple|str,可选) - 填充大小。如果它是一个字符串,可以是"VALID"或者"SAME",表示填充算法,计算细节可参考上述 ``padding`` = "SAME"或 ``padding`` = "VALID" 时的计算公式。如果它是一个元组或列表,它可以有3种格式:(1)包含4个二元组:当 ``data_format`` 为"NCHW"时为 [[0,0], [0,0], [padding_height_top, padding_height_bottom], [padding_width_left, padding_width_right]],当 ``data_format`` 为"NHWC"时为[[0,0], [padding_height_top, padding_height_bottom], [padding_width_left, padding_width_right], [0,0]];(2)包含4个整数值:[padding_height_top, padding_height_bottom, padding_width_left, padding_width_right];(3)包含2个整数值:[padding_height, padding_width],此时padding_height_top = padding_height_bottom = padding_height, padding_width_left = padding_width_right = padding_width。若为一个整数,padding_height = padding_width = padding。默认值:0。
- **stride** (int|list|tuple,可选) - 步长大小。滤波器和输入进行卷积计算时滑动的步长。如果它是一个列表或元组,则必须包含两个整型数:(stride_height,stride_width)。若为一个整数,stride_height = stride_width = stride。默认值:1。
- **dilation** (int|list|tuple,可选) - 膨胀比例大小。空洞卷积时会使用该参数,滤波器对输入进行卷积时,感受野里每相邻两个特征点之间的空洞信息。如果膨胀比例为列表或元组,则必须包含两个整型数:(dilation_height,dilation_width)。若为一个整数,dilation_height = dilation_width = dilation。默认值:1。
- **groups** (int,可选) - 二维卷积层的组数。根据Alex Krizhevsky的深度卷积神经网络(CNN)论文中的成组卷积:当group=n,输入和滤波器分别根据通道数量平均分为n组,第一组滤波器和第一组输入进行卷积计算,第二组滤波器和第二组输入进行卷积计算,……,第n组滤波器和第n组输入进行卷积计算。默认值:1。
- **param_attr** (ParamAttr,可选) - 指定权重参数属性的对象。默认值为None,表示使用默认的权重参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
- **dilation** (int|list|tuple,可选) - 空洞大小。空洞卷积时会使用该参数,卷积核对输入进行卷积时,感受野里每相邻两个特征点之间的空洞信息。如果空洞大小为列表或元组,则必须包含两个整型数:(dilation_height,dilation_width)。若为一个整数,dilation_height = dilation_width = dilation。默认值:1。
- **groups** (int,可选) - 二维卷积层的组数。根据Alex Krizhevsky的深度卷积神经网络(CNN)论文中的成组卷积:当group=n,输入和卷积核分别根据通道数量平均分为n组,第一组卷积核和第一组输入进行卷积计算,第二组卷积核和第二组输入进行卷积计算,……,第n组卷积核和第n组输入进行卷积计算。默认值:1。
- **weight_attr** (ParamAttr,可选) - 指定权重参数属性的对象。默认值为None,表示使用默认的权重参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
- **bias_attr** (ParamAttr|bool,可选)- 指定偏置参数属性的对象。若 ``bias_attr`` 为bool类型,只支持为False,表示没有偏置参数。默认值为None,表示使用默认的偏置参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
- **use_cudnn** (bool,可选)- 是否使用cudnn内核。只有已安装cudnn库时才有效。默认值:True。
- **act** (str,可选) - 激活函数类型, 如tanh、softmax、sigmoid,relu等,支持列表请参考 :ref:`api_guide_activations` 。如果设为None,则未添加激活函数。默认值:None。
- **name** (str,可选) – 具体用法请参见 :ref:`cn_api_guide_Name` ,一般无需设置,默认值:None。
- **data_format** (str,可选) - 指定输入的数据格式,输出的数据格式将与输入保持一致,可以是"NCHW"和"NHWC"。N是批尺寸,C是通道数,H是特征高度,W是特征宽度。默认值:"NCHW"。
- **dtype** (str, 可选) – 权重的数据类型,可以为float32或float64。默认为float32。
- **name** (str,可选) – 具体用法请参见 :ref:`cn_api_guide_Name` ,一般无需设置,默认值:None。
属性
::::::::::::
.. py:attribute:: weight
本层的可学习参数,类型为 ``Parameter``
返回:4-D Tensor,数据类型与 ``x`` 一致。返回卷积的结果。
.. py:attribute:: bias
本层的可学习偏置,类型为 ``Parameter``
返回: 无。
返回类型:Tensor。
抛出异常:
- ``ValueError`` - 如果 ``use_cudnn`` 不是bool值。
- ``ValueError`` - 如果 ``data_format`` 既不是"NCHW"也不是"NHWC"。
- ``ValueError`` - 如果 ``input`` 的通道数未被明确定义。
- ``ValueError`` - 如果 ``padding`` 是字符串,既不是"SAME"也不是"VALID"。
- ``ValueError`` - 如果 ``padding`` 含有4个二元组,与批尺寸对应维度的值不为0或者与通道对应维度的值不为0。
- ``ShapeError`` - 如果输入不是4-D Tensor。
- ``ShapeError`` - 如果输入和滤波器的维度大小不相同。
- ``ShapeError`` - 如果输入和卷积核的维度大小不相同。
- ``ShapeError`` - 如果输入的维度大小与 ``stride`` 之差不是2。
- ``ShapeError`` - 如果输出的通道数不能被 ``groups`` 整除。
......@@ -104,17 +87,20 @@ Conv2D
.. code-block:: python
import numpy as np
from paddle import fluid
import paddle.fluid.dygraph as dg
from paddle import nn
x = np.random.uniform(-1, 1, (2, 4, 8, 8)).astype('float32')
place = fluid.CPUPlace()
with dg.guard(place):
x_var = dg.to_variable(x)
conv = nn.Conv2D(4, 6, (3, 3))
y_var = conv(x_var)
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 6, 6)
import paddle
import paddle.nn.functional as F
import numpy as np
x = np.random.randn(2, 3, 8, 8).astype(np.float32)
w = np.random.randn(6, 3, 3, 3).astype(np.float32)
paddle.disable_static()
x_var = paddle.to_tensor(x)
w_var = paddle.to_tensor(w)
y_var = F.conv2d(x_var, w_var)
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 6, 6)
\ No newline at end of file
conv3d
-------------------------------
.. py:function:: paddle.nn.functional.conv3d(x, weight, bias=None, stride=1, padding=0, dilation=1, groups=1, data_format="NCHW", name=None)
该OP是三维卷积层(convolution3D layer),根据输入、卷积核、步长(stride)、填充(padding)、空洞大小(dilations)一组参数计算得到输出特征层大小。输入和输出是NCDHW或NDWHC格式,其中N是批尺寸,C是通道数,D是特征层深度,H是特征层高度,W是特征层宽度。三维卷积(Convlution3D)和二维卷积(Convlution2D)相似,但多了一维深度信息(depth)。如果bias_attr不为False,卷积计算会添加偏置项。
对每个输入X,有等式:
.. math::
Out = \sigma \left ( W * X + b \right )
其中:
- :math:`X` :输入值,NCDHW或NDHWC格式的5-D Tensor
- :math:`W` :卷积核值,MCDHW格式的5-D Tensor
- :math:`*` :卷积操作
- :math:`b` :偏置值,2-D Tensor,形为 ``[M,1]``
- :math:`\sigma` :激活函数
- :math:`Out` :输出值, NCDHW或NDHWC格式的5-D Tensor,和 ``X`` 的形状可能不同
**示例**
- 输入:
输入形状: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
卷积核形状: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`
- 输出:
输出形状: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
参数:
- **x** (Tensor) - 输入是形状为 :math:`[N, C, H, W]` 或 :math:`[N, H, W, C]` 的4-D Tensor,N是批尺寸,C是通道数,H是特征高度,W是特征宽度,数据类型为float16, float32或float64。
- **weight** (Tensor) - 形状为 :math:`[M, C/g, kH, kW]` 的卷积核(卷积核)。 M是输出通道数, g是分组的个数,kH是卷积核的高度,kW是卷积核的宽度。
- **bias** (int|list|tuple) - 偏置项,形状为: :math:`[M,]` 。
- **stride** (int|list|tuple,可选) - 步长大小。卷积核和输入进行卷积计算时滑动的步长。如果它是一个列表或元组,则必须包含两个整型数:(stride_height,stride_width)。若为一个整数,stride_height = stride_width = stride。默认值:1。
- **padding** (int|list|tuple|str,可选) - 填充大小。如果它是一个字符串,可以是"VALID"或者"SAME",表示填充算法,计算细节可参考上述 ``padding`` = "SAME"或 ``padding`` = "VALID" 时的计算公式。如果它是一个元组或列表,它可以有3种格式:(1)包含5个二元组:当 ``data_format`` 为"NCDHW"时为 [[0,0], [0,0], [padding_depth_front, padding_depth_back], [padding_height_top, padding_height_bottom], [padding_width_left, padding_width_right]],当 ``data_format`` 为"NDHWC"时为[[0,0], [padding_depth_front, padding_depth_back], [padding_height_top, padding_height_bottom], [padding_width_left, padding_width_right], [0,0]];(2)包含6个整数值:[padding_depth_front, padding_depth_back, padding_height_top, padding_height_bottom, padding_width_left, padding_width_right];(3)包含3个整数值:[padding_depth, padding_height, padding_width],此时 padding_depth_front = padding_depth_back = padding_depth, padding_height_top = padding_height_bottom = padding_height, padding_width_left = padding_width_right = padding_width。若为一个整数,padding_depth = padding_height = padding_width = padding。默认值:0。
- **dilation** (int|list|tuple,可选) - 空洞大小。空洞卷积时会使用该参数,卷积核对输入进行卷积时,感受野里每相邻两个特征点之间的空洞信息。如果空洞大小为列表或元组,则必须包含两个整型数:(dilation_height,dilation_width)。若为一个整数,dilation_height = dilation_width = dilation。默认值:1。
- **groups** (int,可选) - 二维卷积层的组数。根据Alex Krizhevsky的深度卷积神经网络(CNN)论文中的成组卷积:当group=n,输入和卷积核分别根据通道数量平均分为n组,第一组卷积核和第一组输入进行卷积计算,第二组卷积核和第二组输入进行卷积计算,……,第n组卷积核和第n组输入进行卷积计算。默认值:1。
- **weight_attr** (ParamAttr,可选) - 指定权重参数属性的对象。默认值为None,表示使用默认的权重参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
- **bias_attr** (ParamAttr|bool,可选)- 指定偏置参数属性的对象。若 ``bias_attr`` 为bool类型,只支持为False,表示没有偏置参数。默认值为None,表示使用默认的偏置参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
- **data_format** (str,可选) - 指定输入的数据格式,输出的数据格式将与输入保持一致,可以是"NCHW"和"NHWC"。N是批尺寸,C是通道数,H是特征高度,W是特征宽度。默认值:"NCHW"。
- **name** (str,可选) – 具体用法请参见 :ref:`cn_api_guide_Name` ,一般无需设置,默认值:None。
返回:5-D Tensor,数据类型与 ``input`` 一致。返回卷积计算的结果。
返回类型:Tensor。
抛出异常:
- ``ValueError`` - 如果 ``use_cudnn`` 不是bool值。
- ``ValueError`` - 如果 ``data_format`` 既不是"NCDHW"也不是"NDHWC"。
- ``ValueError`` - 如果 ``input`` 的通道数未被明确定义。
- ``ValueError`` - 如果 ``padding`` 是字符串,既不是"SAME"也不是"VALID"。
- ``ValueError`` - 如果 ``padding`` 含有5个二元组,与批尺寸对应维度的值不为0或者与通道对应维度的值不为0。
- ``ShapeError`` - 如果输入不是5-D Tensor。
- ``ShapeError`` - 如果输入和卷积核的维度大小不相同。
- ``ShapeError`` - 如果输入的维度大小与 ``stride`` 之差不是2。
- ``ShapeError`` - 如果输出的通道数不能被 ``groups`` 整除。
**代码示例**:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn.functional as F
x = np.random.randn(2, 3, 8, 8, 8).astype(np.float32)
w = np.random.randn(6, 3, 3, 3, 3).astype(np.float32)
paddle.disable_static()
x_var = paddle.to_tensor(x)
w_var = paddle.to_tensor(w)
y_var = F.conv3d(x_var, w_var)
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 6, 6, 6)
\ No newline at end of file
conv_transpose2d
-------------------------------
.. py:function:: paddle.nn.functional.conv_transpose2d(x, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1, data_format='NCHW', output_size=None, name=None)
二维转置卷积层(Convlution2D transpose layer)
该层根据输入(input)、卷积核(kernel)和空洞大小(dilations)、步长(stride)、填充(padding)来计算输出特征层大小或者通过output_size指定输出特征层大小。输入(Input)和输出(Output)为NCHW或NHWC格式,其中N为批尺寸,C为通道数(channel),H为特征层高度,W为特征层宽度。卷积核是MCHW格式,M是输出图像通道数,C是输入图像通道数,H是卷积核高度,W是卷积核宽度。如果组数大于1,C等于输入图像通道数除以组数的结果。转置卷积的计算过程相当于卷积的反向计算。转置卷积又被称为反卷积(但其实并不是真正的反卷积)。欲了解转置卷积层细节,请参考下面的说明和 参考文献_ 。如果参数bias_attr不为False, 转置卷积计算会添加偏置项。如果act不为None,则转置卷积计算之后添加相应的激活函数。
.. _参考文献: https://arxiv.org/pdf/1603.07285.pdf
输入 :math:`X` 和输出 :math:`Out` 函数关系如下:
.. math::
Out=\sigma (W*X+b)\\
其中:
- :math:`X` : 输入,具有NCHW或NHWC格式的4-D Tensor
- :math:`W` : 卷积核,具有NCHW格式的4-D Tensor
- :math:`*` : 卷积计算(注意:转置卷积本质上的计算还是卷积)
- :math:`b` : 偏置(bias),2-D Tensor,形状为 ``[M,1]``
- :math:`σ` : 激活函数
- :math:`Out` : 输出值,NCHW或NHWC格式的4-D Tensor, 和 ``X`` 的形状可能不同
**示例**
- 输入:
输入Tensor的形状: :math:`(N,C_{in}, H_{in}, W_{in})`
卷积核的形状 : :math:`(C_{in}, C_{out}, H_f, W_f)`
- 输出:
输出Tensor的形状 : :math:`(N,C_{out}, H_{out}, W_{out})`
其中
.. math::
& H'_{out} = (H_{in}-1)*strides[0] - pad\_height\_top - pad\_height\_bottom + dilations[0]*(H_f-1)+1\\
& W'_{out} = (W_{in}-1)*strides[1]- pad\_width\_left - pad\_width\_right + dilations[1]*(W_f-1)+1 \\
& H_{out}\in[H'_{out},H'_{out} + strides[0])\\
& W_{out}\in[W'_{out},W'_{out} + strides[1])\\
如果 ``padding`` = "SAME":
.. math::
& H'_{out} = \frac{(H_{in} + stride[0] - 1)}{stride[0]}\\
& W'_{out} = \frac{(W_{in} + stride[1] - 1)}{stride[1]}\\
如果 ``padding`` = "VALID":
.. math::
& H'_{out} = (H_{in}-1)*strides[0] + dilations[0]*(H_f-1)+1\\
& W'_{out} = (W_{in}-1)*strides[1] + dilations[1]*(W_f-1)+1 \\
注意:
如果output_size为None,则 :math:`H_{out}` = :math:`H^\prime_{out}` , :math:`W_{out}` = :math:`W^\prime_{out}` ;否则,指定的output_size_height(输出特征层的高) :math:`H_{out}` 应当介于 :math:`H^\prime_{out}` 和 :math:`H^\prime_{out} + strides[0]` 之间(不包含 :math:`H^\prime_{out} + strides[0]` ), 并且指定的output_size_width(输出特征层的宽) :math:`W_{out}` 应当介于 :math:`W^\prime_{out}` 和 :math:`W^\prime_{out} + strides[1]` 之间(不包含 :math:`W^\prime_{out} + strides[1]` )。
由于转置卷积可以当成是卷积的反向计算,而根据卷积的输入输出计算公式来说,不同大小的输入特征层可能对应着相同大小的输出特征层,所以对应到转置卷积来说,固定大小的输入特征层对应的输出特征层大小并不唯一。
如果指定了output_size, ``conv2d_transpose`` 可以自动计算卷积核的大小。
参数:
- **x** (Tensor) - 输入是形状为 :math:`[N, C, H, W]` 或 :math:`[N, H, W, C]` 的4-D Tensor,N是批尺寸,C是通道数,H是特征高度,W是特征宽度,数据类型为float16, float32或float64。
- **weight** (Tensor) - 形状为 :math:`[C, M/g, kH, kW]` 的卷积核(卷积核)。 M是输出通道数, g是分组的个数,kH是卷积核的高度,kW是卷积核的宽度。
- **bias** (int|list|tuple) - 偏置项,形状为: :math:`[M,]` 。
- **stride** (int|list|tuple,可选) - 步长大小。如果 ``stride`` 为元组,则必须包含两个整型数,分别表示垂直和水平滑动步长。否则,表示垂直和水平滑动步长均为 ``stride`` 。默认值:1。
- **padding** (int|list|tuple|str,可选) - 填充大小。如果它是一个字符串,可以是"VALID"或者"SAME",表示填充算法,计算细节可参考上述 ``padding`` = "SAME"或 ``padding`` = "VALID" 时的计算公式。如果它是一个元组或列表,它可以有3种格式:(1)包含4个二元组:当 ``data_format`` 为"NCHW"时为 [[0,0], [0,0], [padding_height_top, padding_height_bottom], [padding_width_left, padding_width_right]],当 ``data_format`` 为"NHWC"时为[[0,0], [padding_height_top, padding_height_bottom], [padding_width_left, padding_width_right], [0,0]];(2)包含4个整数值:[padding_height_top, padding_height_bottom, padding_width_left, padding_width_right];(3)包含2个整数值:[padding_height, padding_width],此时padding_height_top = padding_height_bottom = padding_height, padding_width_left = padding_width_right = padding_width。若为一个整数,padding_height = padding_width = padding。默认值:0。
- **output_padding** (int|list|tuple, optional): 输出形状上一侧额外添加的大小. 默认值: 0.
- **dilation** (int|list|tuple,可选) - 空洞大小。空洞卷积时会使用该参数,卷积核对输入进行卷积时,感受野里每相邻两个特征点之间的空洞信息。如果空洞大小为列表或元组,则必须包含两个整型数:(dilation_height,dilation_width)。若为一个整数,dilation_height = dilation_width = dilation。默认值:1。
- **groups** (int,可选) - 二维卷积层的组数。根据Alex Krizhevsky的深度卷积神经网络(CNN)论文中的成组卷积:当group=n,输入和卷积核分别根据通道数量平均分为n组,第一组卷积核和第一组输入进行卷积计算,第二组卷积核和第二组输入进行卷积计算,……,第n组卷积核和第n组输入进行卷积计算。默认值:1。
- **weight_attr** (ParamAttr,可选) - 指定权重参数属性的对象。默认值为None,表示使用默认的权重参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
- **bias_attr** (ParamAttr|bool,可选)- 指定偏置参数属性的对象。若 ``bias_attr`` 为bool类型,只支持为False,表示没有偏置参数。默认值为None,表示使用默认的偏置参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
- **data_format** (str,可选) - 指定输入的数据格式,输出的数据格式将与输入保持一致,可以是"NCHW"和"NHWC"。N是批尺寸,C是通道数,H是特征高度,W是特征宽度。默认值:"NCHW"。
- **name** (str,可选) – 具体用法请参见 :ref:`cn_api_guide_Name` ,一般无需设置,默认值:None。
返回:4-D Tensor,数据类型与 ``input`` 一致。如果未指定激活层,则返回转置卷积计算的结果,如果指定激活层,则返回转置卷积和激活计算之后的最终结果。
返回类型:Variable
抛出异常:
- ``ValueError`` : 如果输入的shape、kernel_size、stride、padding和groups不匹配,抛出ValueError
- ``ValueError`` - 如果 ``data_format`` 既不是"NCHW"也不是"NHWC"。
- ``ValueError`` - 如果 ``padding`` 是字符串,既不是"SAME"也不是"VALID"。
- ``ValueError`` - 如果 ``padding`` 含有4个二元组,与批尺寸对应维度的值不为0或者与通道对应维度的值不为0。
- ``ValueError`` - 如果 ``output_size`` 和 ``filter_size`` 同时为None。
- ``ShapeError`` - 如果输入不是4-D Tensor。
- ``ShapeError`` - 如果输入和卷积核的维度大小不相同。
- ``ShapeError`` - 如果输入的维度大小与 ``stride`` 之差不是2。
**代码示例**
.. code-block:: python
import numpy as np
import paddle
import paddle.nn.functional as F
x = np.random.randn(2, 3, 8, 8).astype(np.float32)
w = np.random.randn(3, 6, 3, 3).astype(np.float32)
paddle.disable_static()
x_var = paddle.to_tensor(x)
w_var = paddle.to_tensor(w)
y_var = F.conv_transpose2d(x_var, w_var)
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 10, 10)
conv_transpose3d
-------------------------------
.. py:function:: paddle.nn.functional.conv_transpose3d(x, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1, data_format='NCHW', output_size=None, name=None)
三维转置卷积层(Convlution3d transpose layer)
该层根据输入(input)、卷积核(kernel)和卷积核空洞大小(dilations)、步长(stride)、填充(padding)来计算输出特征层大小或者通过output_size指定输出特征层大小。输入(Input)和输出(Output)为NCDHW或者NDHWC格式。其中N为批尺寸,C为通道数(channel),D为特征深度,H为特征层高度,W为特征层宽度。转置卷积的计算过程相当于卷积的反向计算。转置卷积又被称为反卷积(但其实并不是真正的反卷积)。欲了解卷积转置层细节,请参考下面的说明和 参考文献_ 。如果参数bias_attr不为False, 转置卷积计算会添加偏置项。
.. _参考文献: http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf
输入 :math:`X` 和输出 :math:`Out` 函数关系如下:
.. math::
\\Out=\sigma (W*X+b)\\
其中:
- :math:`X` : 输入,具有NCDHW或NDHWC格式的5-D Tensor
- :math:`W` : 卷积核,具有NCDHW格式的5-D Tensor
- :math:`*` : 卷积操作(注意:转置卷积本质上的计算还是卷积)
- :math:`b` : 偏置(bias),2-D Tensor,形状为 ``[M,1]``
- :math:`σ` : 激活函数
- :math:`Out` : 输出值,NCDHW或NDHWC格式的5-D Tensor,和 ``X`` 的形状可能不同
**示例**
输入:
输入的shape::math:`(N,C_{in}, D_{in}, H_{in}, W_{in})`
卷积核的shape::math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
输出:
输出的shape::math:`(N,C_{out}, D_{out}, H_{out}, W_{out})`
其中:
.. math::
& D'_{out}=(D_{in}-1)*strides[0] - pad\_depth\_front - pad\_depth\_back + dilations[0]*(D_f-1)+1\\
& H'_{out}=(H_{in}-1)*strides[1] - pad\_height\_top - pad\_height\_bottom + dilations[1]*(H_f-1)+1\\
& W'_{out}=(W_{in}-1)*strides[2] - pad\_width\_left - pad\_width\_right + dilations[2]*(W_f-1)+1\\
& D_{out}\in[D'_{out},D'_{out} + strides[0])\\
& H_{out}\in[H'_{out},H'_{out} + strides[1])\\
& W_{out}\in[W'_{out},W'_{out} + strides[2])\\
如果 ``padding`` = "SAME":
.. math::
D'_{out} = \frac{(D_{in} + stride[0] - 1)}{stride[0]}\\
H'_{out} = \frac{(H_{in} + stride[1] - 1)}{stride[1]}\\
W'_{out} = \frac{(W_{in} + stride[2] - 1)}{stride[2]}\\
如果 ``padding`` = "VALID":
.. math::
D'_{out}=(D_{in}-1)*strides[0] + dilations[0]*(D_f-1)+1\\
H'_{out}=(H_{in}-1)*strides[1] + dilations[1]*(H_f-1)+1\\
W'_{out}=(W_{in}-1)*strides[2] + dilations[2]*(W_f-1)+1\\
注意:
如果output_size为None,则 :math:`D_{out}` = :math:`D^\prime_{out}` , :math:`H_{out}` = :math:`H^\prime_{out}` , :math:`W_{out}` = :math:`W^\prime_{out}` ;否则,指定的output_size_depth(输出特征层的深度) :math:`D_{out}` 应当介于 :math:`D^\prime_{out}` 和 :math:`D^\prime_{out} + strides[0]` 之间(不包含 :math:`D^\prime_{out} + strides[0]` ),指定的output_size_height(输出特征层的高) :math:`H_{out}` 应当介于 :math:`H^\prime_{out}` 和 :math:`H^\prime_{out} + strides[1]` 之间(不包含 :math:`H^\prime_{out} + strides[1]` ), 并且指定的output_size_width(输出特征层的宽) :math:`W_{out}` 应当介于 :math:`W^\prime_{out}` 和 :math:`W^\prime_{out} + strides[2]` 之间(不包含 :math:`W^\prime_{out} + strides[2]` )。
由于转置卷积可以当成是卷积的反向计算,而根据卷积的输入输出计算公式来说,不同大小的输入特征层可能对应着相同大小的输出特征层,所以对应到转置卷积来说,固定大小的输入特征层对应的输出特征层大小并不唯一。
如果指定了output_size, ``conv_transpose3d`` 可以自动计算卷积核的大小。
参数:
- **x** (Tensor) - 形状为 :math:`[N, C, D, H, W]` 或 :math:`[N, D, H, W, C]` 的5-D Tensor,N是批尺寸,C是通道数,D是特征深度,H是特征高度,W是特征宽度,数据类型:float32或float64。
- **weight** (Tensor) - 形状为 :math:`[C, M/g, kD, kH, kW]` 的卷积核。 M是输出通道数, g是分组的个数,kD是卷积核的深度,kH是卷积核的高度,kW是卷积核的宽度。
- **bias** (int|list|tuple) - 偏置项,形状为: :math:`[M,]` 。
- **stride** (int|list|tuple,可选) - 步长大小。如果 ``stride`` 为元组或列表,则必须包含三个整型数,分别表示深度,垂直和水平滑动步长。否则,表示深度,垂直和水平滑动步长均为 ``stride`` 。默认值:1。
- **padding** (int|list|tuple|str,可选) - 填充padding大小。padding参数在输入特征层每边添加 ``dilation * (kernel_size - 1) - padding`` 个0。如果它是一个字符串,可以是"VALID"或者"SAME",表示填充算法,计算细节可参考上述 ``padding`` = "SAME"或 ``padding`` = "VALID" 时的计算公式。如果它是一个元组或列表,它可以有3种格式:(1)包含5个二元组:当 ``data_format`` 为"NCDHW"时为 [[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]],当 ``data_format`` 为"NDHWC"时为[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]];(2)包含6个整数值:[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right];(3)包含3个整数值:[pad_depth, pad_height, pad_width],此时 pad_depth_front = pad_depth_back = pad_depth, pad_height_top = pad_height_bottom = pad_height, pad_width_left = pad_width_right = pad_width。若为一个整数,pad_depth = pad_height = pad_width = padding。默认值:0。
- **output_padding** (int|list|tuple, optional): 输出形状上一侧额外添加的大小. 默认值: 0.
- **dilation** (int|list|tuple,可选) - 空洞大小。空洞卷积时会使用该参数,卷积核对输入进行卷积时,感受野里每相邻两个特征点之间的空洞信息。如果空洞大小为列表或元组,则必须包含两个整型数:(dilation_height,dilation_width)。若为一个整数,dilation_height = dilation_width = dilation。默认值:1。
- **groups** (int,可选) - 三维转置卷积层的组数。从Alex Krizhevsky的CNN Deep论文中的群卷积中受到启发,当group=2时,输入和卷积核分别根据通道数量平均分为两组,第一组卷积核和第一组输入进行卷积计算,第二组卷积核和第二组输入进行卷积计算。默认:group = 1。
- **weight_attr** (ParamAttr,可选) - 指定权重参数属性的对象。默认值为None,表示使用默认的权重参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
- **bias_attr** (ParamAttr|bool,可选)- 指定偏置参数属性的对象。若 ``bias_attr`` 为bool类型,只支持为False,表示没有偏置参数。默认值为None,表示使用默认的偏置参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
- **data_format** (str,可选) - 指定输入的数据格式,输出的数据格式将与输入保持一致,可以是"NCHW"和"NHWC"。N是批尺寸,C是通道数,H是特征高度,W是特征宽度。默认值:"NCHW"。
- **name** (str,可选) – 具体用法请参见 :ref:`cn_api_guide_Name` ,一般无需设置,默认值:None。
返回:5-D Tensor,数据类型与 ``input`` 一致。如果未指定激活层,则返回转置卷积计算的结果,如果指定激活层,则返回转置卷积和激活计算之后的最终结果。
返回类型:Tensor
抛出异常:
- ``ValueError`` - 如果输入的shape、kernel_size、stride、padding和groups不匹配。
- ``ValueError`` - 如果 ``data_format`` 既不是"NCDHW"也不是"NDHWC"。
- ``ValueError`` - 如果 ``padding`` 是字符串,既不是"SAME"也不是"VALID"。
- ``ValueError`` - 如果 ``padding`` 含有5个二元组,与批尺寸对应维度的值不为0或者与通道对应维度的值不为0。
- ``ValueError`` - 如果 ``output_size`` 和 ``filter_size`` 同时为None。
- ``ShapeError`` - 如果输入不是5-D Tensor。
- ``ShapeError`` - 如果输入和卷积核的维度大小不相同。
- ``ShapeError`` - 如果输入的维度大小与 ``stride`` 之差不是2。
**代码示例**
.. code-block:: python
import numpy as np
import paddle
import paddle.nn.functional as F
x = np.random.randn(2, 3, 8, 8, 8).astype(np.float32)
w = np.random.randn(3, 6, 3, 3, 3).astype(np.float32)
paddle.disable_static()
x_var = paddle.to_tensor(x)
w_var = paddle.to_tensor(w)
y_var = F.conv_transpose3d(x_var, w_var)
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 10, 10, 10)
kl_div
-------------------------------
.. py:function:: paddle.nn.functional.kl_div(input, label, reduction='mean', name=None)
该算子计算输入(Input)和输入(Label)之间的Kullback-Leibler散度损失。注意其中输入(Input)应为对数概率值,输入(Label)应为概率值。
kL发散损失计算如下:
.. math::
l(input, label) = label * (log(label) - input)
当 ``reduction`` 为 ``none`` 时,输出损失与输入(x)形状相同,各点的损失单独计算,不会对结果做reduction 。
当 ``reduction`` 为 ``mean`` 时,输出损失为[1]的形状,输出为所有损失的平均值。
当 ``reduction`` 为 ``sum`` 时,输出损失为[1]的形状,输出为所有损失的总和。
当 ``reduction`` 为 ``batchmean`` 时,输出损失为[N]的形状,N为批大小,输出为所有损失的总和除以批量大小。
参数:
- **input** (Tensor) - KL散度损失算子的输入张量。维度为[N, \*]的多维Tensor,其中N是批大小,\*表示任何数量的附加维度,数据类型为float32或float64。
- **label** (Tensor) - KL散度损失算子的张量。与输入 ``input`` 的维度和数据类型一致的多维Tensor。
- **reduction** (str,可选) - 要应用于输出的reduction类型,可用类型为‘none’ | ‘batchmean’ | ‘mean’ | ‘sum’,‘none’表示无reduction,‘batchmean’ 表示输出的总和除以批大小,‘mean’ 表示所有输出的平均值,‘sum’表示输出的总和。
- **name** (str,可选) – 具体用法请参见 :ref:`api_guide_Name` ,一般无需设置。默认值:None。
返回:Tensor KL散度损失。
**代码示例:**
.. code-block:: python
import paddle
import numpy as np
import paddle.nn.functional as F
paddle.disable_static()
shape = (5, 20)
input = np.random.uniform(-10, 10, shape).astype('float32')
target = np.random.uniform(-10, 10, shape).astype('float32')
# 'batchmean' reduction, loss shape will be [N]
pred_loss = F.kl_div(paddle.to_tensor(input),
paddle.to_tensor(target), reduction='batchmean')
# shape=[5]
# 'mean' reduction, loss shape will be [1]
pred_loss = F.kl_div(paddle.to_tensor(input),
paddle.to_tensor(target), reduction='mean')
# shape=[1]
# 'sum' reduction, loss shape will be [1]
pred_loss = F.kl_div(paddle.to_tensor(input),
paddle.to_tensor(target), reduction='sum')
# shape=[1]
# 'none' reduction, loss shape is same with input shape
pred_loss = F.kl_div(paddle.to_tensor(input),
paddle.to_tensor(target), reduction='none')
# shape=[5, 20]
.. _cn_api_nn_cn_kldiv_loss:
kldiv_loss
-------------------------------
:doc_source: paddle.fluid.layers.kldiv_loss
......@@ -15,5 +15,6 @@ loss
loss_cn/MarginRankingLoss_cn.rst
loss_cn/MSELoss_cn.rst
loss_cn/NLLLoss_cn.rst
loss_cn/KLDivLoss_cn.rst
loss_cn/SmoothL1Loss.rst
loss_cn/CTCLoss_cn.rst
KLDivLoss
-------------------------------
.. py:class:: paddle.nn.loss.KLDivLoss(reduction='mean')
该算子计算输入(Input)和输入(Label)之间的Kullback-Leibler散度损失。注意其中输入(Input)应为对数概率值,输入(Label)应为概率值。
kL发散损失计算如下:
.. math::
l(input, label) = label * (log(label) - input)
当 ``reduction`` 为 ``none`` 时,输出损失与输入(input)形状相同,各点的损失单独计算,不会对结果做reduction 。
当 ``reduction`` 为 ``mean`` 时,输出损失为[1]的形状,输出为所有损失的平均值。
当 ``reduction`` 为 ``sum`` 时,输出损失为[1]的形状,输出为所有损失的总和。
当 ``reduction`` 为 ``batchmean`` 时,输出损失为[N]的形状,N为批大小,输出为所有损失的总和除以批量大小。
参数:
- **reduction** (str,可选) - 要应用于输出的reduction类型,可用类型为‘none’ | ‘batchmean’ | ‘mean’ | ‘sum’,‘none’表示无reduction,‘batchmean’ 表示输出的总和除以批大小,‘mean’ 表示所有输出的平均值,‘sum’表示输出的总和。
形状:
- **input** (Tensor): - 输入的Tensor,维度是[N, *], 其中N是batch size, `*` 是任意数量的额外维度。数据类型为:float32、float64。
- **label** (Tensor): - 标签,维度是[N, *], 与 ``input`` 相同。数据类型为:float32、float64。
- **output** (Tensor): - 输入 ``input`` 和标签 ``label`` 间的kl散度。如果 `reduction` 是 ``'none'``, 则输出Loss的维度为 [N, *], 与输入 ``input`` 相同。如果 `reduction` 是 ``'batchmean'`` 、 ``'mean'`` 或 ``'sum'``, 则输出Loss的维度为 [1]。
**代码示例:**
.. code-block:: python
import paddle
import numpy as np
import paddle.nn as nn
paddle.disable_static()
shape = (5, 20)
x = np.random.uniform(-10, 10, shape).astype('float32')
target = np.random.uniform(-10, 10, shape).astype('float32')
# 'batchmean' reduction, loss shape will be [N]
kldiv_criterion = nn.KLDivLoss(reduction='batchmean')
pred_loss = kldiv_criterion(paddle.to_tensor(x),
paddle.to_tensor(target))
# shape=[5]
# 'mean' reduction, loss shape will be [1]
kldiv_criterion = nn.KLDivLoss(reduction='mean')
pred_loss = kldiv_criterion(paddle.to_tensor(x),
paddle.to_tensor(target))
# shape=[1]
# 'sum' reduction, loss shape will be [1]
kldiv_criterion = nn.KLDivLoss(reduction='sum')
pred_loss = kldiv_criterion(paddle.to_tensor(x),
paddle.to_tensor(target))
# shape=[1]
# 'none' reduction, loss shape is same with X shape
kldiv_criterion = nn.KLDivLoss(reduction='none')
pred_loss = kldiv_criterion(paddle.to_tensor(x),
paddle.to_tensor(target))
# shape=[5, 20]
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册