提交 58e5553e 编写于 作者: J JiabinYang

Merge branch 'develop' of https://github.com/PaddlePaddle/FluidDoc into add_api_guide_pool

......@@ -7,3 +7,4 @@ API Guide
:maxdepth: 1
high_low_level_api.md
low_level/inference.rst
.. _api_guide_executor:
########
Executor
########
:code:`Executor` 即 :code:`执行器` 。PaddlePaddle Fluid中有两种执行器可以选择。
:code:`Executor` 实现了一个简易的执行器,所有Operator会被顺序执行。用户可以使用
Python脚本驱动 :code:`Executor` 执行。默认情况下 :code:`Executor` 是单线程的,如果
想使用数据并行,请参考另一个执行器, :ref:`api_guide_parallel_executor` 。
:code:`Executor` 的代码逻辑非常简单。建议用户在调试过程中,先使用
:code:`Executor` 跑通模型,再切换到多设备计算,甚至多机计算。
:code:`Executor` 在构造的时候接受一个 :code:`Place`, 它们可以是 :ref:`api_fluid_CPUPlace`
或 :ref:`api_fluid_CUDAPlace` 。 :code:`Executor` 在执行的时候可以选择执行的
:ref:`api_guide_low_level_program` 。
简单的使用方法,请参考 `quick_start_fit_a_line <../../beginners_guide/quick_start/fit_a_line/README.cn.html>`_ , API Reference 请参考
:ref:`api_fluid_Executor` 。
.. _api_guide_inference:
#########
预测引擎
#########
预测引擎提供了存储预测模型 :code:`fluid.io.save_inference_model` 和加载预测模型 :code:`fluid.io.load_inference_model` 两个接口。
预测模型的存储格式
=================
预测模型的存储格式有两种,由上述两个接口中的 :code:`model_filename` 和 :code:`params_filename` 变量控制:
- 参数保存到各个独立的文件,如设置 :code:`model_filename` 为 :code:`None` 、:code:`params_filename` 为 :code:`None`
.. code-block:: bash
ls recognize_digits_conv.inference.model/*
__model__ conv2d_1.w_0 conv2d_2.w_0 fc_1.w_0 conv2d_1.b_0 conv2d_2.b_0 fc_1.b_0
- 参数保存到同一个文件,如设置 :code:`model_filename` 为 :code:`None` 、:code:`params_filename` 为 :code:`__params__`
.. code-block:: bash
ls recognize_digits_conv.inference.model/*
__model__ __params__
存储预测模型
===========
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
path = "./infer_model"
fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
target_vars=[predict_var], executor=exe)
在这个示例中,:code:`fluid.io.save_inference_model` 接口对默认的 :code:`fluid.Program` 进行裁剪,只保留预测 :code:`predict_var` 所需部分。
裁剪后的 :code:`program` 会保存在 :code:`./infer_model/__model__` 下,参数会保存到 :code:`./infer_model` 下的各个独立文件。
加载预测模型
===========
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
path = "./infer_model"
[inference_program, feed_target_names, fetch_targets] =
fluid.io.load_inference_model(dirname=path, executor=exe)
results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_img},
fetch_list=fetch_targets)
在这个示例中,首先调用 :code:`fluid.io.load_inference_model` 接口,获得预测的 :code:`program` 、输入数据的 :code:`variable` 名称和输出结果的 :code:`variable` ;
然后调用 :code:`executor` 执行预测的 :code:`program` 获得预测结果。
.. _api_guide_conv:
#####
卷积
#####
卷积有两组输入:特征图和卷积核,依据输入特征和卷积核的形状、Layout不同、计算方式的不同,在Fluid里,有针对变长序列特征的一维卷积,有针对定长图像特征的二维(2D Conv)、三维卷积(3D Conv),同时也有卷积计算的逆向过程,下面先介绍Fluid里的2D/3D卷积,再来介绍序列卷积。
2D/3D卷积
==============
1. 卷积输入参数:
---------------------
卷积需要依据滑动步长(stride)、填充长度(padding)、卷积核窗口大小(filter size)、分组数(groups)、扩张系数(dilation rate)来决定如何计算。groups最早在 `AlexNet <https://www.nvidia.cn/content/tesla/pdf/machine-learning/imagenet-classification-with-deep-convolutional-nn.pdf>`_ 中引入, 可以理解为将原始的卷积分为独立若干组卷积计算。
**注意**: 同cuDNN的方式,Fluid目前只支持在特征图上下填充相同的长度,左右也是。
- 输入输出Layout:
2D卷积输入特征的Layout为[N, C, H, W]或[N, H, W, C], N即batch size,C是通道数,H、W是特征的高度和宽度,输出特征和输入特征的Layout一致。(相应的3D卷积输入特征的Layout为[N, C, D, H, W]或[N, D, H, W, C],但**注意**,Fluid的卷积当前只支持[N, C, H, W],[N, C, D, H, W]。)
- 卷积核的Layout:
Fluid中2D卷积的卷积核(也称权重)的Layout为[C_o, C_in / groups, f_h, f_w],C_o、C_in表示输出、输入通道数,f_h、f_w表示卷积核窗口的高度和宽度,按行序存储。(相应的2D卷积的卷积核Layout为[C_o, C_in / groups, f_d, f_h, d_w],同样按行序存储。)
- 深度可分离卷积(depthwise separable convolution):
在深度可分离卷积中包括depthwise convolution和pointwise convolution两组,这两个卷积的接口和上述普通卷积接口相同。前者可以通过给普通卷积设置groups来做,后者通过设置卷积核filters的大小为1x1,深度可分离卷积减少参数的同时减少了计算量。
对于depthwise convolution,可以设置groups等于输入通道数,此时,2D卷积的卷积核形状为[C_o, 1, f_h, f_w]。
对于pointwise convolution,卷积核的形状为[C_o, C_in, 1, 1]。
**注意**:Fluid针对depthwise convolution的GPU计算做了高度优化,您可以通过在:code:`fluid.layers.conv2d`接口设置:code:`use_cudnn=False`来使用Fluid自身优化的CUDA程序。
- 空洞卷积(dilated convolution):
空洞卷积相比普通卷积而言,卷积核在特征图上取值时不在连续,而是间隔的,这个间隔数称作dilation,等于1时,即为普通卷积,空洞卷积相比普通卷积的感受野更大。
- API汇总:
- :ref:`api_fluid_layers_conv2d`
- :ref:`api_fluid_layers_conv3d`
- :ref:`api_fluid_layers_conv2d_transpose`
- :ref:`api_fluid_layers_conv3d_transpose`
1D序列卷积
==============
Fluid可以表示变长的序列结构,这里的变长是指不同样本的时间步(step)数不一样,通常是一个2D的Tensor和一个能够区分的样本长度的辅助结构来表示。假定,2D的Tensor的形状是shape,shape[0]是所有样本的总时间步数,shape[1]是序列特征的大小。
基于此数据结构的卷积在Fluid里称作序列卷积,也表示一维卷积。同图像卷积,序列卷积的输入参数有卷积核大小、填充大小、滑动步长,但与2D卷积不同的是,这些参数个数都为1。**注意**,目前仅支持stride为1的情况,输出序列的时间步数和输入序列相同。
假如:输入序列形状为(T, N), T即该序列的时间步数,N是序列特征大小;卷积核的上下文步长为K,输出序列长度为M,则卷积核权重形状为(K * N, M),输出序列形状为(T, M)。
另外,参考DeepSpeech,Fluid实现了行卷积row convolution, 或称
`look ahead convolution <http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf>`_ ,
该卷积相比上述普通序列卷积可以减少参数。
- API汇总:
- :ref:`api_fluid_layers_sequence_conv`
- :ref:`api_fluid_layers_row_conv`
=============
fluid.layers
=============
.. toctree::
:maxdepth: 1
\ No newline at end of file
......@@ -14,9 +14,8 @@ Optimizer
:code:`SGD` 是实现 `随机梯度下降 <https://arxiv.org/pdf/1609.04747.pdf>`_ 的一个 :code:`Optimizer` 子类,是 `梯度下降 <https://zh.wikipedia.org/zh-hans/梯度下降法>`_ 大类中的一种方法。
当需要训练大量样本的时候,往往选择 :code:`SGD` 来使损失函数更快的收敛。
API Reference 请参考 api_fluid_optimizer_SGDOptimizer_
API Reference 请参考 :ref:`api_fluid_optimizer_SGDOptimizer`
.. _api_fluid_optimizer_SGDOptimizer: http://www.paddlepaddle.org/docs/0.14.0/api/fluid/en/optimizer.html#permalink-8-sgdoptimizer
2.Momentum/MomentumOptimizer
----------------------------
......@@ -26,35 +25,32 @@ API Reference 请参考 api_fluid_optimizer_SGDOptimizer_
<https://arxiv.org/pdf/1609.04747.pdf>`_ 算法和 `Nesterov accelerated gradient(论文4.2节)
<https://arxiv.org/pdf/1609.04747.pdf>`_ 算法。
API Reference 请参考 api_fluid_optimizer_MomentumOptimizer_
API Reference 请参考 :ref:`api_fluid_optimizer_MomentumOptimizer`
.. _api_fluid_optimizer_MomentumOptimizer: http://www.paddlepaddle.org/docs/0.14.0/api/fluid/en/optimizer.html#permalink-9-momentumoptimizer
3. Adagrad/AdagradOptimizer
---------------------------
`Adagrad <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_ 优化器可以针对不同参数样本数不平均的问题,自适应地为各个参数分配不同的学习率。
API Reference 请参考 api_fluid_optimizer_AdagradOptimizer_
API Reference 请参考 :ref:`api_fluid_optimizer_AdagradOptimizer`
.. _api_fluid_optimizer_AdagradOptimizer: http://www.paddlepaddle.org/docs/0.14.0/api/fluid/en/optimizer.html#permalink-10-adagradoptimizer
4.RMSPropOptimizer
------------------
`RMSProp优化器 <http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_ ,是一种自适应调整学习率的方法,
主要解决使用Adagrad后,模型训练中后期学习率急剧下降的问题。
API Reference 请参考 api_fluid_optimizer_RMSPropOptimizer_
API Reference 请参考 :ref:`api_fluid_optimizer_RMSPropOptimizer`
.. _api_fluid_optimizer_RMSPropOptimizer: http://www.paddlepaddle.org/docs/0.14.0/api/fluid/en/optimizer.html#permalink-14-rmspropoptimizer
5.Adam/AdamOptimizer
--------------------
`Adam <https://arxiv.org/abs/1412.6980>`_ 的优化器是一种自适应调整学习率的方法,
适用于大多非 `凸优化 <https://zh.wikipedia.org/zh/凸優化>`_ 、大数据集和高维空间的场景。在实际应用中,:code:`Adam` 是最为常用的一种优化方法。
API Reference 请参考 api_fluid_optimizer_AdamOptimizer_
API Reference 请参考 :ref:`api_fluid_optimizer_AdamOptimizer`
.. _api_fluid_optimizer_AdamOptimizer: http://www.paddlepaddle.org/docs/0.14.0/api/fluid/en/optimizer.html#permalink-11-adamoptimizer
6.Adamax/AdamaxOptimizer
......@@ -62,9 +58,8 @@ API Reference 请参考 api_fluid_optimizer_AdamOptimizer_
`Adamax <https://arxiv.org/abs/1412.6980>`_ 是 :code:`Adam` 算法的一个变体,对学习率的上限提供了一个更简单的范围,使学习率的边界范围更简单。
API Reference 请参考 api_fluid_optimizer_AdamxOptimizer_
API Reference 请参考 :ref:`api_fluid_optimizer_AdamaxOptimizer`
.. _api_fluid_optimizer_AdamxOptimizer: http://www.paddlepaddle.org/docs/0.14.0/api/fluid/en/optimizer.html#permalink-12-adamaxoptimizer
7.DecayedAdagrad/ DecayedAdagradOptimizer
......@@ -72,9 +67,9 @@ API Reference 请参考 api_fluid_optimizer_AdamxOptimizer_
`DecayedAdagrad <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_ 优化器,可以看做是引入了衰减速率的 :code:`Adagrad` 算法,解决使用Adagrad后,模型训练中后期学习率急剧下降的问题。
API Reference 请参考 api_fluid_optimizer_DecayedAdagrad_
API Reference 请参考 :ref:`api_fluid_optimizer_DecayedAdagrad`
.. _api_fluid_optimizer_DecayedAdagrad: http://www.paddlepaddle.org/docs/0.14.0/api/fluid/en/optimizer.html#permalink-13-decayedadagradoptimizer
8. Ftrl/FtrlOptimizer
......@@ -83,24 +78,15 @@ API Reference 请参考 api_fluid_optimizer_DecayedAdagrad_
`FtrlOptimizer <https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf>`_ 优化器结合了 `FOBOS算法 <https://stanford.edu/~jduchi/projects/DuchiSi09b.pdf>`_ 的高精度与 `RDA算法
<http://www1.se.cuhk.edu.hk/~sqma/SEEM5121_Spring2015/dual-averaging.pdf>`_ 的稀疏性,是目前效果非常好的一种 `Online Learning <https://en.wikipedia.org/wiki/Online_machine_learning>`_ 算法。
API Reference 请参考 api_fluid_optimizer_FtrlOptimizer_
API Reference 请参考 :ref:`api_fluid_optimizer_FtrlOptimizer`
.. _api_fluid_optimizer_FtrlOptimizer: http://www.paddlepaddle.org/docs/0.14.0/api/fluid/en/optimizer.html#permalink-15-ftrloptimizer
9.ModelAverage
-----------------
:code:`ModelAverage` 优化器,在训练中通过窗口来累计历史 parameter,在预测时使用取平均值后的paramet,整体提高预测的精度。
API Reference 请参考 api_fluid_optimizer_ModelAverage_
.. _api_fluid_optimizer_ModelAverage: http://www.paddlepaddle.org/docs/0.14.0/api/fluid/en/optimizer.html#permalink-17-modelaverage
10.Optimizer
--------------
:code:`Optimizer` 这个类是 :code:`Fluid` 中优化器的基类。它的作用是定义优化器的公共接口,用户通过该类调用上述经典的优化算法。
API Reference 请参考 :ref:`api_fluid_optimizer_ModelAverage`
API Reference 请参考 api_fluid_optimizer_
.. _api_fluid_optimizer: http://www.paddlepaddle.org/docs/0.14.0/api/fluid/en/optimizer.html#permalink-18-optimizer
......@@ -5,6 +5,7 @@ API Reference
.. toctree::
:maxdepth: 1
api_guides/index.rst
fluid.rst
layers.rst
data_feeder.rst
......
.. _api_guide_data_in_out:
数据输入
##################
Fluid支持两种数据输入方式,包括:
1. Python Reader: 纯Python的Reader。用户在Python端定义 :code:`fluid.layers.data` 层构建网络,并通过
:code:`executor.run(feed=...)` 的方式读入数据。数据读取和模型训练/预测的过程是同步进行的。
2. PyReader: 高效灵活的C++ Reader接口。PyReader内部维护容量为 :code:`capacity` 的队列(队列容量由
:code:`fluid.layers.py_reader` 接口中的 :code:`capacity` 参数设置),Python端调用队列的 :code:`push`
方法送入训练/预测数据,C++端的训练/预测程序调用队列的 :code:`pop` 方法取出Python端送入的数据。PyReader可与
:code:`double_buffer` 配合使用,实现数据读取和训练/预测的异步执行。
具体使用方法请参考 :ref:`user_guide_use_py_reader`。
数据输出
##################
Fluid支持在训练/预测阶段获取当前batch的数据。
用户可通过 :code:`executor.run(fetch_list=[...], return_numpy=...)` 的方式
fetch期望的输出变量,通过设置 :code:`return_numpy` 参数设置是否将输出数据转为numpy array。
若 :code:`return_numpy` 为 :code:`False` ,则返回 :code:`LoDTensor` 类型数据。
具体使用方式请参考相关API文档 :ref:`api_fluid_executor_Executor` 和
:ref:`api_fluid_ParallelExecutor`。
\ No newline at end of file
......@@ -342,7 +342,7 @@ PaddePaddle通过编译时指定路径来实现引用各种BLAS/CUDA/cuDNN库。
<td> <a href="https://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl"> paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl</a></td>
</tr>
<tr>
<td> cpu_avx_mkl </td>
<td> cpu_avx_openblas </td>
<td> <a href="https://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl"> paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl</a></td>
<td> <a href="https://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl"> paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl</a></td>
</tr>
......
......@@ -38,10 +38,10 @@
其次,您的计算机需要满足以下要求:
> **请不要使用MacOS中自带python**,我们强烈建议您使用[Homebrew](https://brew.sh)安装python(对于**Python3**请使用python[官方下载](https://www.python.org/downloads/mac-osx/)python3.5.x), pip)
> **请不要使用MacOS中自带python**,对于**Python2**,建议您使用[Homebrew](https://brew.sh)或[Python.org](https://www.python.org/ftp/python/2.7.15/python-2.7.15-macosx10.9.pkg)提供的python2.7.15;对于**Python3**,请使用[Python.org](https://www.python.org/downloads/mac-osx/)提供的python3.5.x。
For python2: brew install python@2
For python3: 使用Python官方下载的python3.5.x
For python2: brew install python@2 或 使用Python官方下载的python2.7.15
For python3: 使用Python官方下载的python3.5.x
* Python2.7.x,Pip >= 9.0.1
* Python3.5.x,Pip3 >= 9.0.1
......
......@@ -55,3 +55,14 @@ Fluid提供PyReader异步数据传入方式,数据传入与模型训练/预测
:maxdepth: 2
use_py_reader.rst
LoD-Tensor简介
#####################
LoD-Tensor是Fluid中特有的概念,它在Tensor基础上附加了序列信息,支持处理变长数据。具体请参考:
.. toctree::
:maxdepth:2
lod_tensor.md
\ No newline at end of file
# LoD-Tensor
LoD(Level-of-Detail) Tensor是Fluid中特有的概念,它在Tensor基础上附加了序列信息。Fluid中可传输的数据包括:输入、输出、网络中的可学习参数,全部统一使用LoD-Tensor表示。
阅读本文档将帮助您了解 Fluid 中的 LoD-Tensor 设计思想,以便您更灵活的使用这一数据类型。
## 变长序列的挑战
大多数的深度学习框架使用Tensor表示一个mini-batch。
例如一个mini-batch中有10张图片,每幅图片大小为32x32,则这个mini-batch是一个10x32x32的 Tensor。
或者在处理NLP任务中,一个mini-batch包含N个句子,每个字都用一个D维的one-hot向量表示,假设所有句子都用相同的长度L,那这个mini-batch可以被表示为NxLxD的Tensor。
上述两个例子中序列元素都具有相同大小,但是在许多情况下,训练数据是变长序列。基于这一场景,大部分框架采取的方法是确定一个固定长度,对小于这一长度的序列数据以0填充。
在Fluid中,由于LoD-Tensor的存在,我们不要求每个mini-batch中的序列数据必须保持长度一致,因此您不需要执行填充操作,也可以满足处理NLP等具有序列要求的任务需求。
Fluid引入了一个索引数据结构(LoD)来将张量分割成序列。
## LoD 索引
为了更好的理解LoD的概念,本节提供了几个例子供您参考:
**句子组成的 mini-batch**
假设一个mini-batch中有3个句子,每个句子中分别包含3个、1个和2个单词。我们可以用(3+1+2)xD维Tensor 加上一些索引信息来表示这个mini-batch:
```
3 1 2
| | | | | |
```
上述表示中,每一个`|` 代表一个D维的词向量,数字3,1,2构成了 1-level LoD。
**递归序列**
让我们来看另一个2-level LoD-Tensor的例子:假设存在一个mini-batch中包含3个句子、1个句子和2个句子的文章,每个句子都由不同数量的单词组成,则这个mini-batch的样式可以看作:
```
3 1 2
3 2 4 1 2 3
||| || |||| | || |||
```
表示的LoD信息为:
```
[[3,1,2]/*level=0*/,[3,2,4,1,2,3]/*level=1*/]
```
**视频的mini-batch**
在视觉任务中,时常需要处理视频和图像这些元素是高维的对象,假设现存的一个nimi-batch包含3个视频,分别有3个,1个和2个帧,每个帧都具有相同大小:640x480,则这个mini-batch可以被表示为:
```
3 1 2
口口口 口 口口
```
最底层tensor大小为(3+1+2)x640x480,每一个`口` 表示一个640x480的图像
**图像的mini-batch**
在传统的情况下,比如有N个固定大小的图像的mini-batch,LoD-Tensor表示为:
```
1 1 1 1 1
口口口口 ... 口
```
在这种情况下,我们不会因为索引值都为1而忽略信息,仅仅把LoD-Tensor看作是一个普通的张量:
```
口口口口 ... 口
```
**模型参数**
模型参数只是一个普通的张量,在Fluid中它们被表示为一个0-level LoD-Tensor。
<a name="#LoDTensor的偏移表示"></a>
## LoDTensor的偏移表示
为了快速访问基本序列,Fluid提供了一种偏移表示的方法——保存序列的开始和结束元素,而不是保存长度。
在上述例子中,您可以计算基本元素的长度:
```
3 2 4 1 2 3
```
将其转换为偏移表示:
```
0 3 5 9 10 12 15
= = = = = =
3 2+3 4+5 1+9 2+10 3+12
```
所以我们知道第一个句子是从单词0到单词3,第二个句子是从单词3到单词5。
类似的,LoD的顶层长度
```
3 1 2
```
可以被转化成偏移形式:
```
0 3 4 6
= = =
3 3+1 4+2
```
因此该LoD-Tensor的偏移表示为:
```
0 3 4 6
3 5 9 10 12 15
```
## LoD-Tensor
一个LoD-Tensor可以被看作是一个树的结构,树叶是基本的序列元素,树枝作为基本元素的标识。
在 Fluid 中 LoD-Tensor 的序列信息有两种表述形式:原始长度和偏移量。在 Paddle 内部采用偏移量的形式表述 LoD-Tensor,以获得更快的序列访问速度;在 python API中采用原始长度的形式表述 LoD-Tensor 方便用户理解和计算,并将原始长度称为:`recursive_sequence_lengths`
以上文提到的一个2-level LoD-Tensor为例:
```
3 1 2
3 2 4 1 2 3
||| || |||| | || |||
```
- 以偏移量表示此 LoD-Tensor:[ [0,3,4,6] , [0,3,5,9,10,12,15] ],
- 以原始长度表达此 Lod-Tensor:recursive_sequence_lengths=[ [3-0 , 4-3 , 6-4] , [3-0 , 5-3 , 9-5 , 10-9 , 12-10 , 15-12] ]。
以文字序列为例: [3,1,2] 可以表示这个mini-batch中有3篇文章,每篇文章分别有3、2、1个句子,[3,2,4,1,2,3] 表示每个句子中分别含有3、2、4、1、2、3个字。
recursive_seq_lens 是一个双层嵌套列表,也就是列表的列表,最外层列表的size表示嵌套的层数,也就是lod-level的大小;内部的每个列表,对应表示每个lod-level下,每个元素的大小。
```python
#查看lod-tensor嵌套层数
print len(recursive_seq_lengths)
# output:2
#查看最基础元素个数
print sum(recursive_seq_lengths[-1])
# output:15 (3+2+4+1+2+3=15)
```
## 代码示例
本节代码将根据指定的级别y-lod,扩充输入变量x。本例综合了LoD-Tensor的多个重要概念,跟随代码实现,您将:
- 直观理解Fluid中 `fluid.layers.sequence_expand` 的实现过程
- 掌握如何在Fluid中创建LoD-Tensor
- 学习如何打印LoDTensor内容
**创建LoD-Tensor**
Fluid中可以通过`fluid.create_lod_tensor()`创建一个LoD-Tensor,使用说明请参考[API reference](http://paddlepaddle.org/documentation/api/zh/develop/fluid.html#create-lod-tensor)。需要注意的是,这个API只能支持int64的数据,如果您希望处理float32的数据,推荐您使用下述方式创建lod_tensor:
使用fluid.LoDTensor()创建一个LoD-Tensor,并为其指定数据、运算场所和LoD值:
```python
import paddle.fluid as fluid
import numpy as np
def create_lod_tensor(data, lod, place):
res = fluid.LoDTensor()
res.set(data, place)
res.set_lod(lod)
return res
```
**定义计算过程**
layers.sequence_expand通过获取 y 的 lod 值对 x 的数据进行扩充,关于`fluid.layers.sequence_expand` 的功能说明,请先阅读[API reference](http://www.paddlepaddle.org/documentation/api/zh/0.15.0/layers.html#sequence-expand)
序列扩充代码实现:
```python
x = fluid.layers.data(name='x', shape=[1], dtype='float32', lod_level=0)
y = fluid.layers.data(name='y', shape=[1], dtype='float32', lod_level=1)
out = fluid.layers.sequence_expand(x=x, y=y, ref_level=0)
```
*说明*:输出LoD-Tensor的维度仅与传入的真实数据维度有关,在定义网络结构阶段为x、y设置的shape值,仅作为占位,并不影响结果。
**创建Executor**
```python
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
```
<a name="#准备数据"></a>
**准备数据**
这里我们使用[偏移量](#LoDTensor的偏移表示)的方法表示Tensor的LoD索引:
假使x_d 为一个LoDTensor:
```
x.lod = [[0,1,4]]
x.data = [[1],[2],[3],[4]]
x.dims = [4,1]
```
y_d 也为一个LoDTensor:
```
y.lod = [[0, 1, 4],
[0, 2, 3, 5, 6]]
```
其中,输出值只与 y 的LoD值有关,y_d 的 data 值在这里并不参与计算,维度上与LoD[-1]一致即可。
预期输出结果为:
```
#预期输出lod的原始长度
out.lod = [ [1, 3, 3, 3]]
#预期输出结果
out.data = [ [1],[2],[3],[4],[2],[3],[4],[2],[3],[4]]
```
实现代码如下:
```python
x_d = create_lod_tensor(np.array([[1], [2],[3],[4]]), [[0,1,4]], place)
y_d = create_lod_tensor(np.array([[1],[1],[1],[1],[1],[1]]), [[0,1,4], [0,2,3,5,6]], place)
```
**执行运算**
在Fluid中,LoD>1的Tensor与其他类型数据一样,使用feed定义数据传入顺序。此外,由于输出results是带有LoD信息的Tensor,需在exe.run( )中添加`return_numpy=False`参数,获得LoD-Tensor的输出结果。
```python
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
results = exe.run(fluid.default_main_program(),
feed={'x':x_d, 'y': y_d },
fetch_list=[out],return_numpy=False)
```
**查看LodTensor结果**
由于LoDTensor的特殊属性,无法直接print查看内容,常用操作时将LoD-Tensor作为网络的输出fetch出来,然后执行 numpy.array(lod_tensor), 就能转成numpy array:
```python
np.array(results[0])
```
输出结果为:
```
array([[1],[2],[3],[4],[2],[3],[4],[2],[3],[4]])
```
可以看到与[准备数据](#准备数据)一节中的预期结果一致。
## 总结
至此,相信您已经基本掌握了LoD-Tensor的概念,尝试修改上述代码中的 x_d 与 y_d,观察输出结果,有助于您更好的理解这一灵活的结构。
更多LoDTensor的模型应用,可以参考新手入门中的[词向量](../../../beginners_guide/basics/word2vec/index.html)[个性化推荐](../../../beginners_guide/basics/recommender_system/index.html)[情感分析](../../../beginners_guide/basics/understand_sentiment/index.html)等指导教程。
更高阶的应用案例,请参考[模型库](../../../user_guides/models/index.html)中的相关内容。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册