未验证 提交 4689bd7a 编写于 作者: Q qingqing01 提交者: GitHub

Fix type error and fluid.layers.data (#1498)

上级 4416990b
......@@ -35,14 +35,10 @@ detection_output
.. code-block:: python
import paddle.fluid as fluid
pb = fluid.layers.data(name='prior_box', shape=[10, 4],
append_batch_size=False, dtype='float32')
pbv = fluid.layers.data(name='prior_box_var', shape=[10, 4],
append_batch_size=False, dtype='float32')
loc = fluid.layers.data(name='target_box', shape=[2, 21, 4],
append_batch_size=False, dtype='float32')
scores = fluid.layers.data(name='scores', shape=[2, 21, 10],
append_batch_size=False, dtype='float32')
pb = fluid.data(name='prior_box', shape=[10, 4], dtype='float32')
pbv = fluid.data(name='prior_box_var', shape=[10, 4], dtype='float32')
loc = fluid.data(name='target_box', shape=[2, 21, 4], dtype='float32')
scores = fluid.data(name='scores', shape=[2, 21, 10], dtype='float32')
nmsed_outs = fluid.layers.detection_output(scores=scores,
loc=loc,
prior_box=pb,
......
......@@ -59,18 +59,17 @@ generate_mask_labels
import paddle.fluid as fluid
im_info = fluid.layers.data(name="im_info", shape=[3],
dtype="float32")
gt_classes = fluid.layers.data(name="gt_classes", shape=[1],
im_info = fluid.data(name="im_info", shape=[None, 3], dtype="float32")
gt_classes = fluid.data(name="gt_classes", shape=[None, 1],
dtype="float32", lod_level=1)
is_crowd = fluid.layers.data(name="is_crowd", shape=[1],
is_crowd = fluid.data(name="is_crowd", shape=[None, 1],
dtype="float32", lod_level=1)
gt_masks = fluid.layers.data(name="gt_masks", shape=[2],
gt_masks = fluid.data(name="gt_masks", shape=[None, 2],
dtype="float32", lod_level=3)
# rois, roi_labels 可以是fluid.layers.generate_proposal_labels的输出
rois = fluid.layers.data(name="rois", shape=[4],
rois = fluid.data(name="rois", shape=[None, 4],
dtype="float32", lod_level=1)
roi_labels = fluid.layers.data(name="roi_labels", shape=[1],
roi_labels = fluid.data(name="roi_labels", shape=[None, 1],
dtype="int32", lod_level=1)
mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
im_info=im_info,
......
......@@ -25,7 +25,7 @@ multi_box_head
- **num_classes** (int) - 类别数。
- **aspect_ratios** (list(float) | tuple(float) | list(list(float)) | tuple(tuple(float)) - 候选框的宽高比, ``aspect_ratios`` 和 ``input`` 的个数必须相等。如果每个特征层提取先验框的 ``aspect_ratio`` 多余一个,写成嵌套的list,例如[[2., 3.]]。
- **min_ratio** (int)- 先验框的长度和 ``base_size`` 的最小比率,注意,这里是百分比,加入比率为0.2,这里应该给20.0。默认值: None。
- **min_ratio** (int)- 先验框的长度和 ``base_size`` 的最小比率,注意,这里是百分比,假如比率为0.2,这里应该给20.0。默认值: None。
- **max_ratio** (int)- 先验框的长度和 ``base_size`` 的最大比率,注意事项同 ``min_ratio`` 。默认值: None。
- **min_sizes** (list(float) | tuple(float) | None)- 每层提取的先验框的最小长度,如果输入个数len(inputs)<= 2,则必须设置 ``min_sizes`` ,并且 ``min_sizes`` 的个数应等于len(inputs)。默认值:None。
- **max_sizes** (list | tuple | None)- 每层提取的先验框的最大长度,如果len(inputs)<= 2,则必须设置 ``max_sizes`` ,并且 ``min_sizes`` 的长度应等于len(inputs)。默认值:None。
......@@ -56,13 +56,13 @@ multi_box_head
import paddle.fluid as fluid
images = fluid.layers.data(name='data', shape=[3, 300, 300], dtype='float32')
conv1 = fluid.layers.data(name='conv1', shape=[512, 19, 19], dtype='float32')
conv2 = fluid.layers.data(name='conv2', shape=[1024, 10, 10], dtype='float32')
conv3 = fluid.layers.data(name='conv3', shape=[512, 5, 5], dtype='float32')
conv4 = fluid.layers.data(name='conv4', shape=[256, 3, 3], dtype='float32')
conv5 = fluid.layers.data(name='conv5', shape=[256, 2, 2], dtype='float32')
conv6 = fluid.layers.data(name='conv6', shape=[128, 1, 1], dtype='float32')
images = fluid.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
conv1 = fluid.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
conv2 = fluid.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
conv3 = fluid.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
conv4 = fluid.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
conv5 = fluid.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
conv6 = fluid.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')
mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
......@@ -83,13 +83,13 @@ multi_box_head
import paddle.fluid as fluid
images = fluid.layers.data(name='data', shape=[3, 300, 300], dtype='float32')
conv1 = fluid.layers.data(name='conv1', shape=[512, 19, 19], dtype='float32')
conv2 = fluid.layers.data(name='conv2', shape=[1024, 10, 10], dtype='float32')
conv3 = fluid.layers.data(name='conv3', shape=[512, 5, 5], dtype='float32')
conv4 = fluid.layers.data(name='conv4', shape=[256, 3, 3], dtype='float32')
conv5 = fluid.layers.data(name='conv5', shape=[256, 2, 2], dtype='float32')
conv6 = fluid.layers.data(name='conv6', shape=[128, 1, 1], dtype='float32')
images = fluid.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
conv1 = fluid.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
conv2 = fluid.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
conv3 = fluid.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
conv4 = fluid.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
conv5 = fluid.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
conv6 = fluid.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')
mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
......
......@@ -21,16 +21,15 @@ random_crop
.. code-block:: python
import paddle.fluid as fluid
img = fluid.layers.data("img", [3, 256, 256])
img = fluid.data("img", [None, 3, 256, 256])
# cropped_img的shape: [-1, 3, 224, 224]
cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
# cropped_img2的shape: [-1, 2, 224, 224]
# cropped_img2 = fluid.layers.random_crop(img, shape=[2,224, 224])
# cropped_img2的shape: [-1, 3, 128, 224]
# cropped_img2 = fluid.layers.random_crop(img, shape=[128, 224])
# cropped_img3的shape: [-1, 3, 128, 224]
# cropped_img3 = fluid.layers.random_crop(img, shape=[128, 224])
......@@ -47,17 +47,15 @@ neg_indices中的第i个实例的索引称作neg_indice,则对于第i个实例
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(
x = fluid.data(
name='x',
shape=[4, 20, 4],
dtype='float',
lod_level=1,
append_batch_size=False)
matched_id = fluid.layers.data(
lod_level=1)
matched_id = fluid.data(
name='indices',
shape=[8, 20],
dtype='int32',
append_batch_size=False)
dtype='int32')
trg, trg_weight = fluid.layers.target_assign(
x,
matched_id,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册