未验证 提交 445b8e69 编写于 作者: T Tink_Y 提交者: GitHub

update api list (#506) (#508)

上级 d71f3c1d
=============
API Reference
=============
.. toctree::
:maxdepth: 1
fluid.rst
average.rst
backward.rst
clip.rst
data.rst
data_feeder.rst
executor.rst
initializer.rst
io.rst
layers.rst
metrics.rst
nets.rst
optimizer.rst
param_attr.rst
profiler.rst
recordio_writer.rst
regularizer.rst
transpiler.rst
......@@ -18,7 +18,6 @@ API Reference
metrics.rst
nets.rst
optimizer.rst
param_attr.rst
profiler.rst
recordio_writer.rst
regularizer.rst
......
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
================
fluid.param_attr
================
.. _api_fluid_param_attr_ParamAttr:
ParamAttr
---------
.. autoclass:: paddle.fluid.param_attr.ParamAttr
:members:
:noindex:
.. _api_fluid_param_attr_WeightNormParamAttr:
WeightNormParamAttr
-------------------
.. autoclass:: paddle.fluid.param_attr.WeightNormParamAttr
:members:
:noindex:
......@@ -18,7 +18,6 @@ API
metrics_cn.rst
nets_cn.rst
optimizer_cn.rst
param_attr_cn.rst
profiler_cn.rst
regularizer_cn.rst
transpiler_cn.rst
#################
fluid.param_attr
#################
.. _cn_api_fluid_param_attr_ParamAttr:
ParamAttr
-------------------------------
.. py:class:: paddle.fluid.param_attr.ParamAttr(name=None, initializer=None, learning_rate=1.0, regularizer=None, trainable=True, gradient_clip=None, do_model_average=False)
该类代表了参数的各种属性。 为了使神经网络训练过程更加流畅,用户可以根据需要调整参数属性。比如learning rate(学习率), regularization(正则化), trainable(可训练性), do_model_average(平均化模型)和参数初始化方法.
参数:
- **name** (str) – 参数名。默认为None。
- **initializer** (Initializer) – 初始化该参数的方法。 默认为None
- **learning_rate** (float) – 参数的学习率。计算方法为 global_lr*parameter_lr∗scheduler_factor。 默认为1.0
- **regularizer** (WeightDecayRegularizer) – 正则因子. 默认为None
- **trainable** (bool) – 该参数是否可训练。默认为True
- **gradient_clip** (BaseGradientClipAttr) – 减少参数梯度的方法。默认为None
- **do_model_average** (bool) – 该参数是否服从模型平均值。默认为False
**代码示例**
.. code-block:: python
w_param_attrs = fluid.ParamAttr(name="fc_weight",
learning_rate=0.5,
regularizer=fluid.L2Decay(1.0),
trainable=True)
y_predict = fluid.layers.fc(input=x, size=10, param_attr=w_param_attrs)
.. _cn_api_fluid_param_attr_WeightNormParamAttr:
WeightNormParamAttr
-------------------------------
.. py:class:: paddle.fluid.param_attr.WeightNormParamAttr(dim=None, name=None, initializer=None, learning_rate=1.0, regularizer=None, trainable=True, gradient_clip=None, do_model_average=False)
权重归一化。权范数是神经网络中权向量的再参数化,它将权向量的长度与其方向解耦。该paper对权值归一化的实现进行了讨论: `Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks <https://arxiv.org/pdf/1602.07868.pdf>`_
参数:
- **dim** (list) – 参数维度. Default None.
- **name** (str) – 参数名称. Default None.
- **initializer** (Initializer) – 初始化参数的方法. Default None.
- **learning_rate** (float) – 参数的学习率. 优化的参数学习率为 :math:`global\_lr*parameter\_lr*scheduler\_factor` . Default 1.0
- **regularizer** (WeightDecayRegularizer) – 正则化因子. Default None.
- **trainable** (bool) – 参数是否可训练. Default True.
- **gradient_clip** (BaseGradientClipAttr) – 修剪这个参数的梯度的方法. Default None.
- **do_model_average** (bool) – 这个参数是否应该做模型平均. Default False.
**代码示例**
.. code-block:: python
data = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
fc = fluid.layers.fc(input=data,
size=1000,
param_attr=WeightNormParamAttr(
dim=None,
name='weight_norm_param'))
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册