提交 3a3e2f0a 编写于 作者: G grasswolfs

test=release/1.8, test=document_fix

上级 e2abd26a
...@@ -751,12 +751,6 @@ class MNIST(fluid.dygraph.Layer): ...@@ -751,12 +751,6 @@ class MNIST(fluid.dygraph.Layer):
``` ```
File "<ipython-input-1-b7b25c28bae2>", line 25
@declarative
^
TabError: inconsistent use of tabs and spaces in indentation
2) 利用ProgramTranslator进行转换 2) 利用ProgramTranslator进行转换
......
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
## 重要更新 ## 重要更新
本版本深度优化了命令式编程模式(动态图)的功能、性能和体验,框架基础功能也进一步强化;原生推理库性能显著优化,轻量化推理引擎PaddleLite实现了对硬件支持的极大覆盖,新发布前端推理引擎Paddle.js,PaddleServing全面升级,提供功能强大简单易用的服务化部署能力。对应的开发套件和工具组件进一步丰富完善,有套件组件的功能和体验持续提升,全新发布PaddleClas视觉分类套件和量桨Paddle Quantum量子机器学习框架。 本版本深度优化了命令式编程模式(动态图)的功能、性能和体验,框架基础功能也进一步强化;原生推理库性能显著优化,轻量化推理引擎PaddleLite实现了对硬件支持的极大覆盖,新发布前端推理引擎Paddle.js,PaddleServing全面升级,提供功能强大简单易用的服务化部署能力。对应的开发套件和工具组件进一步丰富完善,有套件组件的功能和体验持续提升,全新发布PaddleClas视觉分类套件和量桨Paddle Quantum量子机器学习框架。
**训练框架:** 深度优化了命令式编程(动态图)功能、性能和体验,特别是增强了动静转换的能力,能支持依赖数据的控制流的动态图实现进行静态存储部署,也可以转为静态图模式训练;Data Loader的功能和梯度裁剪的使用方式进一步优化;声明式编程模式下多卡运行时fetch不定长Tensor等问题得到解决,混合精度配合重计算显示出支持大Batch训练很好的成效。新增了大量API,并新增 ComplexVariable,支持复数张量的表示和常见的复数运算。 **训练框架:** 深度优化了命令式编程(动态图)功能、性能和体验,特别是增强了动静转换的能力,能支持依赖数据的控制流的动态图实现进行静态存储部署,也可以转为静态图模式训练;Data Loader的功能和梯度裁剪的使用方式进一步优化;声明式编程模式下多卡运行时fetch不定长Tensor等问题得到解决,混合精度配合重计算显示出支持大Batch训练很好的成效。新增了大量API,并新增 ComplexVariable,支持复数张量的表示和常见的复数运算。
......
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
## Important Updates ## Important Updates
This version deeply optimizes the function, performance, and experience of the imperative programming mode (dynamic graph), and further strengthens the basic functions of the framework. It also significantly optimizes the performance of the native inference library, provides a lightweight inference engine Paddle Lite to achieve a great coverage of hardware support, rcomprehensively upgrades Paddle Serving, and has a powerful and simple service-oriented deployment capability. This version further enriches and improves the corresponding development kits and utility components, continues to improve the function and experience of the existing kits and components, and releases a new image classification kit,i.e., and Paddle quantum machine learning framework. This version deeply optimizes the function, performance, and experience of the imperative programming mode (dynamic graph), and further strengthens the basic functions of the framework. It also significantly optimizes the performance of the native inference library, provides a lightweight inference engine Paddle Lite to achieve a great coverage of hardware support, rcomprehensively upgrades Paddle Serving, and has a powerful and simple service-oriented deployment capability. This version further enriches and improves the corresponding development kits and utility components, continues to improve the function and experience of the existing kits and components, and releases a new image classification kit, i.e., PaddleClas, and Paddle quantum machine learning framework.
**Training framework:** Deeply optimizes the function, performance, and experience of imperative programming (dynamic graph) and especially enhances the capability of converting dynamic graph to static graph. Supports to convert data-dependent control flow into static graph to save and deploy, or train under static graph mode. Further optimizes the function of Data Loader and the usage of gradient clipping. Fixes problems for declarative programming mode such as fetching tensors with different lengths between multi-cards. The combination of mixed precision and recomputation shows good results in large-batch training. Adds a number of APIs and ComplexVariable and supports complex number tensor expressions and common complex number operations. **Training framework:** Deeply optimizes the function, performance, and experience of imperative programming (dynamic graph) and especially enhances the capability of converting dynamic graph to static graph. Supports to convert data-dependent control flow into static graph to save and deploy, or train under static graph mode. Further optimizes the function of Data Loader and the usage of gradient clipping. Fixes problems for declarative programming mode such as fetching tensors with different lengths between multi-cards. The combination of mixed precision and recomputation shows good results in large-batch training. Adds a number of APIs and ComplexVariable and supports complex number tensor expressions and common complex number operations.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册