未验证 提交 328bba49 编写于 作者: Y Yu Yang 提交者: GitHub

Merge pull request #16 from reyoung/feature/single_node_training

Feature/single node training
......@@ -5,5 +5,8 @@
.. toctree::
:maxdepth: 2
prepare_data/index
configure_simple_model/index
training/index
......@@ -39,6 +39,8 @@ PaddlePaddle Fluid支持使用 :ref:`api_fluid_layers_data` 配置数据层;
2. Fluid中用来做类别标签的数据类型是 :code:`int64`,并且标签从0开始。可用数据类型请参考 :ref:`user_guide_paddle_support_data_types`。
.. _user_guide_feed_data_to_executor:
传递训练数据给执行器
####################
......
############
训练神经网络
############
PaddlePaddle Fluid支持单机训练,和多节点训练。每种训练模式下,都支持多种训练方法。
.. toctree::
:maxdepth: 2
single_node
multi_node
########
多机训练
########
\ No newline at end of file
.. _user_guide_save_load_vars:
##################
保存与载入模型变量
##################
模型变量分类
############
在PaddlePaddle Fluid中,所有的模型变量都用 :ref:`api_fluid_Variable` 作为基类进行表示。
在该基类之下,模型变量主要可以分为以下几种类别:
1. 模型参数
模型参数是深度学习模型中被训练和学习的变量,在训练过程中,训练框架根据反向传播算法计算出每一个模型参数当前的梯度,
并用优化器根据梯度对参数进行更新。模型的训练过程本质上可以看做是模型参数不断迭代更新的过程。
在PaddlePaddle Fluid中,模型参数用 :code:`fluid.framework.Parameter` 来表示,
这是一个 :ref:`api_fluid_Variable` 的派生类,除了 :ref:`api_fluid_Variable` 具有的各项性质以外,
:code:`fluid.framework.Parameter` 还可以配置自身的初始化方法、更新率等属性。
2. 长期变量
长期变量指的是在整个训练过程中持续存在、不会因为一个迭代的结束而被销毁的变量,例如动态调节的全局学习率等。
在PaddlePaddle Fluid中,长期变量通过将 :ref:`api_fluid_Variable` 的 :code:`persistable`
属性设置为 :code:`True` 来表示。所有的模型参数都是长期变量,但并非所有的长期变量都是模型参数。
3. 临时变量
不属于上面两个类别的所有模型变量都是临时变量,这种类型的变量只在一个训练迭代中存在,在每一个迭代结束后,
所有的临时变量都会被销毁,然后在下一个迭代开始之前,又会先构造出新的临时变量供本轮迭代使用。
一般情况下模型中的大部分变量都属于这一类别,例如输入的训练数据、一个普通的layer的输出等等。
如何保存模型变量
################
根据用途的不同,我们需要保存的模型变量也是不同的。例如,如果我们只是想保存模型用来进行以后的预测,
那么只保存模型参数就够用了。但如果我们需要保存一个checkpoint以备将来恢复训练,
那么我们应该将各种长期变量都保存下来,甚至还需要记录一下当前的epoch和step的id。
因为一些模型变量虽然不是参数,但对于模型的训练依然必不可少。
因此,根据需求的不同,我们提供了两套API来分别进行模型的参数和checkpoint的保存。
保存模型用于对新样本的预测
==========================
如果我们保存模型的目的是用于对新样本的预测,那么只保存模型参数就足够了。我们可以使用
:ref:`api_fluid_io_save_params` 接口来进行模型参数的保存。
例如:
.. code-block:: python
import paddle.fluid as fluid
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
prog = fluid.default_main_program()
fluid.io.save_params(executor=exe, dirname=param_path, main_program=None)
上面的例子中,通过调用 :code:`fluid.io.save_params` 函数,PaddlePaddle Fluid会对默认
:ref:`api_fluid_Program` 也就是 :code:`prog` 中的所有模型变量进行扫描,
筛选出其中所有的模型参数,并将这些模型参数保存到指定的 :code:`param_path` 之中。
保存checkpoint用于将来恢复训练
==============================
在训练过程中,我们可能希望在一些节点上将当前的训练状态保存下来,
以便在将来需要的时候恢复训练环境继续进行训练。这一般被称作“checkpoint”。
想要保存checkpoint,可以使用 :ref:`api_fluid_io_save_checkpoint` 接口。
例如:
.. code-block:: python
import paddle.fluid as fluid
exe = fluid.Executor(fluid.CPUPlace())
path = "./checkpoints"
prog = fluid.default_main_program()
trainer_args = {"epoch_id": 200,
"step_id": 20} # just an example
fluid.io.save_checkpoint(executor=exe,
checkpoint_dir=path,
trainer_id=0,
trainer_args=trainer_args,
main_program=prog,
max_num_checkpoints=3)
上面的例子中,通过调用 :code:`fluid.io.save_checkpoint` 函数,PaddlePaddle Fluid会对默认
:ref:`api_fluid_Program` 也就是 :code:`prog` 中的所有模型变量进行扫描,
根据一系列内置的规则自动筛选出其中所有需要保存的变量,并将他们保存到指定的 :code:`path` 目录下。
:code:`fluid.io.save_checkpoint` 的各个参数中, :code:`trainer_id` 在单机情况下设置为0即可; :code:`trainer_args`
为一个Python dict,用于给定当前的epoch_id和step_id;
:code:`max_num_checkpoints` 用于表示的最大checkpoint数量,
如果目录中已经存在的checkpoint数量超过这个值,那最早的checkpoint将被删除。
如何载入模型变量
################
与模型变量的保存相对应,我们提供了两套API来分别载入模型的参数和载入模型的checkpoint。
载入模型用于对新样本的预测
==========================
对于通过 :code:`fluid.io.save_params` 保存的模型,可以使用 :code:`fluid.io.load_params`
来进行载入。
例如:
.. code-block:: python
import paddle.fluid as fluid
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
prog = fluid.default_main_program()
fluid.io.load_params(executor=exe, dirname=param_path,
main_program=prog)
上面的例子中,通过调用 :code:`fluid.io.load_params` 函数,PaddlePaddle Fluid会对
:code:`prog` 中的所有模型变量进行扫描,筛选出其中所有的模型参数,
并尝试从 :code:`param_path` 之中读取加载它们。
需要格外注意的是,这里的 :code:`prog` 必须和调用 :code:`fluid.io.save_params`
时所用的 :code:`prog` 中的前向部分完全一致,且不能包含任何参数更新的操作。如果两者存在不一致,
那么可能会导致一些变量未被正确加载;如果错误地包含了参数更新操作,那可能会导致正常预测过程中参数被更改。
这两个 :ref:`api_fluid_Program` 之间的关系类似于训练 :ref:`api_fluid_Program`
和测试 :ref:`api_fluid_Program` 之间的关系,详见: :ref:`user_guide_test_while_training`。
另外,需特别注意运行 :code:`fluid.default_startup_program()` 必须在调用 :code:`fluid.io.load_params`
之前。如果在之后运行,可能会覆盖已加载的模型参数导致错误。
载入checkpoint用于恢复训练
==========================
对于通过 :code:`fluid.io.save_checkpoint` 保存的模型,可以使用 :code:`fluid.io.load_checkpoint`
来进行载入。
例如:
.. code-block:: python
import paddle.fluid as fluid
exe = fluid.Executor(fluid.CPUPlace())
path = "./checkpoints"
prog = fluid.default_main_program()
fluid.io.load_checkpoint(executor=exe, checkpoint_dir=path,
serial=9, main_program=prog)
上面的例子中,通过调用 :code:`fluid.io.save_checkpoint` 函数,PaddlePaddle Fluid会对
:code:`prog` 中的所有模型变量进行扫描,根据内置规则自动筛选出需要加载的变量,
并尝试从 :code:`path` 之中加载它们。
参数 :code:`serial` 用来标记具体要加载的checkpoint的版本号。在保存checkpoint的时候,
一个checkpoint会被保存在一个子目录中,并在目录名上体现出自己的版本号。
一般越大的版本号表示这个checkpoint越新。
这里的 :code:`prog` 必须和调用 :code:`fluid.io.save_checkpoint` 时所用的 :code:`prog`
完全一致,否则会导致变量加载错误或者未加载。另外,与 :code:`fluid.io.save_params` 类似,
运行 :code:`fluid.default_startup_program()` 也必须在 :code:`fluid.io.load_checkpoint`
之前进行。
########
单机训练
########
准备工作
########
要进行PaddlePaddle Fluid单机训练,需要先 :ref:`user_guide_prepare_data` 和
:ref:`user_guide_configure_simple_model` 。当\
:ref:`user_guide_configure_simple_model` 完毕后,可以得到两个\
:ref:`api_fluid_Program`, :code:`startup_program` 和 :code:`main_program`。
默认情况下,可以使用 :ref:`api_fluid_default_startup_program` 与\ :ref:`api_fluid_default_main_program` 获得全局的 :ref:`api_fluid_Program`。
例如:
.. code-block:: python
import paddle.fluid as fluid
image = fluid.layers.data(name="image", shape=[784])
label = fluid.layers.data(name="label", shape=[1])
hidden = fluid.layers.fc(input=image, size=100, act='relu')
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
loss = fluid.layers.mean(
fluid.layers.cross_entropy(
input=prediction,
label=label
)
)
sgd = fluid.optimizer.SGD(learning_rate=0.001)
sgd.minimize(loss)
# Here the fluid.default_startup_program() and fluid.default_main_program()
# has been constructed.
在上述模型配置执行完毕后, :code:`fluid.default_startup_program()` 与\
:code:`fluid.default_main_program()` 配置完毕了。
初始化参数
##########
参数随机初始化
==============
用户配置完模型后,参数初始化操作会被写入到\
:code:`fluid.default_startup_program()` 中。使用 :ref:`api_fluid_Executor` 运行
这一程序,即可在全局 :ref:`api_fluid_global_scope` 中随机初始化参数。例如:
.. code-block:: python
exe = fluid.Executor(fluid.CUDAPlace(0))
exe.run(program=fluid.default_startup_program())
值得注意的是: 如果使用多GPU训练,参数需要先在GPU0上初始化,再经由\
:ref:`api_fluid_ParallelExecutor` 分发到多张显卡上。
载入预定义参数
==============
在神经网络训练过程中,经常会需要载入预定义模型,进而继续进行训练。\
如何载入预定义参数,请参考 :ref:`user_guide_save_load_vars`。
单卡训练
########
执行单卡训练可以使用 :ref:`api_fluid_Executor` 中的 :code:`run()` 方法,运行训练\
:ref:`api_fluid_Program` 即可。在运行的时候,用户可以通过 :code:`run(feed=...)`\
参数传入数据;用户可以通过 :code:`run(fetch=...)` 获取持久的数据。例如:\
.. code-block:: python
...
loss = fluid.layers.mean(...)
exe = fluid.Executor(...)
# the result is an numpy array
result = exe.run(feed={"image": ..., "label": ...}, fetch_list=[loss])
这里有几点注意事项:
1. feed的数据格式,请参考文章 :ref:`user_guide_feed_data_to_executor`。
2. :code:`Executor.run` 的返回值是 :code:`fetch_list=[...]` 的variable值。被fetch\
的Variable必须是persistable的。 :code:`fetch_list` 可以传入Variable的列表,\
也可以传入Variable的名字列表。:code:`Executor.run` 返回Fetch结果列表。
3. 如果需要取回的数据包含序列信息,可以设置
:code:`exe.run(return_numpy=False, ...)` 直接返回 :ref:`api_guide_lod_tensor`
。用户可以直接访问 :ref:`api_guide_lod_tensor` 中的信息。
多卡训练
########
执行多卡训练可以使用 :ref:`api_fluid_ParallelExecutor` 运行训练
:ref:`api_fluid_Program`。例如:
.. code-block:: python
train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name,
main_program=fluid.default_main_program())
train_exe.run(fetch_list=[loss.name], feed={...})
这里有几点注意事项:
1. :code:`ParallelExecutor` 的构造函数需要指明要执行的 :ref:`api_fluid_Program` ,
并在执行过程中不能修改。默认值是 :ref:`api_fluid_default_main_program` 。
2. :code:`ParallelExecutor` 需要明确指定是否使用 CUDA 显卡进行训练。在显卡训练\
模式下会占用全部显卡。用户可以配置 `CUDA_VISIBLE_DEVICES <http://www.acceleware.com/blog/cudavisibledevices-masking-gpus>`_ 来修改占用\
的显卡。
进阶使用
########
.. toctree::
:maxdepth: 2
test_while_training
save_load_variables
.. _user_guide_test_while_training:
##################
训练过程中评测模型
##################
模型的测试评价与训练的 :ref:`api_fluid_Program` 不同。在测试评价中:
1. 评价测试不进行反向传播,不优化更新参数。
2. 评价测试执行的操作可以不同。
* 例如 BatchNorm 操作,在训练和测试时执行不同的算法。
* 评价模型与训练相比可以是完全不同的模型。
生成测试 :ref:`api_fluid_Program`
#################################
通过克隆训练 :ref:`api_fluid_Program` 生成测试 :ref:`api_fluid_Program`
=======================================================================
:code:`Program.clone()` 方法可以复制出新的 :ref:`api_fluid_Program` 。 通过设置
:code:`Program.clone(for_test=True)` 复制含有用于测试的操作Program。简单的使用方法如下:
.. code-block:: python
import paddle.fluid as fluid
img = fluid.layers.data(name="image", shape=[784])
prediction = fluid.layers.fc(
input=fluid.layers.fc(input=img, size=100, act='relu'),
size=10,
act='softmax'
)
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
loss = fluid.layers.mean(fluid.layers.cross_entropy(input=prediction, label=label))
acc = fluid.layers.accuracy(input=prediction, label=label)
test_program = fluid.default_main_program().clone(for_test=True)
adam = fluid.optimizer.Adam(learning_rate=0.001)
adam.minimize(loss)
在使用 :code:`Optimizer` 之前,将 :code:`fluid.default_main_program()` 复制\
成一个 :code:`test_program` 。之后使用测试数据运行 :code:`test_program`,\
就可以做到运行测试程序,而不影响训练结果。
分别配置训练 :ref:`api_fluid_Program` 和测试 :ref:`api_fluid_Program`
=====================================================================
如果训练程序和测试程序相差较大时,用户也可以通过完全定义两个不同的
:ref:`api_fluid_Program`,分别进行训练和测试。在PaddlePaddle Fluid中,\
所有的参数都有名字。如果两个不同的操作,甚至两个不同的网络使用了同样名字的参数,\
那么他们的值和内存空间都是共享的。
PaddlePaddle Fluid中使用 :code:`fluid.unique_name` 包来随机初始化用户未定义的\
参数名称。通过 :code:`fluid.unique_name.guard` 可以确保多次调用某函数\
参数初始化的名称一致。
例如:
.. code-block:: python
import paddle.fluid as fluid
def network(is_test):
file_obj = fluid.layers.open_files(filenames=["test.recordio"] if is_test else ["train.recordio"], ...)
img, label = fluid.layers.read_file(file_obj)
hidden = fluid.layers.fc(input=img, size=100, act="relu")
hidden = fluid.layers.batch_norm(input=hidden, is_test=is_test)
...
return loss
with fluid.unique_name.guard():
train_loss = network(is_test=False)
sgd = fluid.optimizer.SGD(0.001)
sgd.minimize(train_loss)
test_program = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_gurad(test_program, fluid.Program()):
test_loss = network(is_test=True)
# fluid.default_main_program() is the train program
# fluid.test_program is the test program
执行测试 :ref:`api_fluid_Program`
#################################
使用 :code:`Executor` 执行测试 :ref:`api_fluid_Program`
=======================================================
用户可以使用 :code:`Executor.run(program=...)` 来执行测试
:ref:`api_fluid_Program`。
例如
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
test_acc = exe.run(program=test_program, feed=test_data_batch, fetch_list=[acc])
print 'Test accuracy is ', test_acc
使用 :code:`ParallelExecutor` 执行测试 :ref:`api_fluid_Program`
===============================================================
用户可以使用训练用的 :code:`ParallelExecutor` 与测试 :ref:`api_fluid_Program`
一起新建一个测试的 :code:`ParallelExecutor` ;再使用测试
:code:`ParallelExecutor.run` 来执行测试。
例如:
.. code-block:: python
train_exec = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
test_exec = fluid.ParallelExecutor(use_cuda=True, share_vars_from=train_exec,
main_program=test_program)
test_acc = test_exec.run(fetch_list=[acc], ...)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册