提交 29eb1a6c 编写于 作者: 黄河大鲤鱼's avatar 黄河大鲤鱼 提交者: Cheerego

Update metrics.rst (#705)

polish metrics.rst
上级 6df1668b
......@@ -2,21 +2,18 @@
模型评估
############
模型评估是指用指标(metrics)反映模型在预期目标下的精度。其中,指标(metrics)根据模型任务决定。模型评估可作为在训练中调整超参数、评估模型效果的重要依据。
metric函数的输入为当前模型的预测preds和labels,输出是自定义的。metric函数和loss函数非常相似,但是metric并不是模型训练网络组成部分。
用户可以通过训练网络得到当前的预测preds和labels,在Python端定制metric函数;也可以通过定制c++ Operator的方式,在GPU上加速metric计算。
paddle.fluid.metrics模块包含该功能。
模型评估是指用评价指标(metrics)反映模型在预期目标下的精度,可作为在训练中调整超参数、评估模型效果的重要依据。其中,评价指标根据模型任务决定,也被称为评价函数。评价函数和loss函数非常相似,但不参与模型的训练优化。
评价函数的输入为模型的预测值(preds)和真实值(labels),返回评价值。
paddle.fluid.metrics模块提供了一系列常用的模型评价指标; 用户也可以方便的通过Python定制评价指标,或者是通过定制C++ Operator的方式,在GPU上加速评价指标的计算。
常用指标
############
metric函数根据模型任务不同,指标构建方法因任务而异
根据不同的任务,会选用不同的评价指标
回归类型任务labels是实数,可参考 MSE (Mean Squared Error) 方法。
分类任务常用指标为分类指标(classification metrics),本文提到的一般是二分类指标,多分类和多标签需要查看对应的API文档。例如排序指标auc,多分类可以作为0,1分类任务,auc指标仍然适用
回归任务labels是实数,评价指标可参考 MSE (Mean Squared Error) 方法。
分类任务常用指标为分类指标(classification metrics),本文提到的一般是二分类指标,多分类(multi-category)和多标签(multi-label)任务的评价指标需要查看对应的API文档。例如排序指标AUC可以同时用在二分类和多分类任务中,因为多分类任务可以转化为二分类任务
Fluid中包含了常用分类指标,例如Precision, Recall, Accuracy等,更多请阅读API文档。以 :ref:`Precision` 为例,具体方法为
.. code-block:: python
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册