未验证 提交 28bfc44b 编写于 作者: D danleifeng 提交者: GitHub

add eye,t,min,max,log1p API Chinese doc (#1986)

* add eye,t,min,max,log1p API doc_cn; test=develop
上级 2abb0318
.. _cn_api_paddle_tensor_eye:
eye
-------------------------------
**版本升级,文档正在开发中**
.. py:function:: paddle.tensor.eye(num_rows, num_columns=None, out=None, dtype='float32', stop_gradient=True, name=None)
该OP用来构建单位矩阵。
参数:
- **num_rows** (int) - 生成单位矩阵的行数,数据类型为非负int32。
- **num_columns** (int) - 生成单位矩阵的列数,数据类型为非负int32。若为None,则默认等于num_rows。
- **out** (Variable, 可选) - 指定算子输出结果的LoDTensor/Tensor,可以是程序中已经创建的任何Variable。默认值为None,此时将创建新的Variable来保存输出结果。
- **dtype** (string, 可选) - 返回张量的数据类型,可为int32,int64,float16,float32,float64。
- **stop_gradient** (bool, 可选) - 是否对此OP停止计算梯度,默认值为False。
- **name** (str, 可选)- 具体用法请参见 :ref:`api_guide_Name` ,一般无需设置,默认值为None。
返回:shape为 [num_rows, num_columns]的张量。
返回类型:Variable(Tensor|LoDTensor)数据类型为int32,int64,float16,float32,float64的Tensor或者LoDTensor。
**代码示例**:
.. code-block:: python
import paddle
data = paddle.eye(3, dtype='int32') # paddle.eye 等价于 paddle.tensor.eye
# [[1, 0, 0]
# [0, 1, 0]
# [0, 0, 1]]
data = paddle.eye(2, 3, dtype='int32')
# [[1, 0, 0]
# [0, 1, 0]]
.. _cn_api_paddle_tensor_log1p:
log1p
-------------------------------
**版本升级,文档正在开发中**
.. py:function:: paddle.tensor.log1p(x, out=None, name=None)
该OP计算Log1p(加一的自然对数)结果。
.. math::
\\Out=ln(x+1)\\
参数:
- **x** (Variable) – 该OP的输入为LodTensor/Tensor。数据类型为float32,float64。
- **out** (Variable, 可选) - 指定算子输出结果的LoDTensor/Tensor,可以是程序中已经创建的任何Variable。默认值为None,此时将创建新的Variable来保存输出结果。
- **name** (str,可选) – 该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` ,默认值为None。
返回:Log1p算子自然对数输出
返回类型: Variable - 该OP的输出为LodTensor/Tensor,数据类型为输入一致。
**代码示例**
.. code-block:: python
import paddle
import paddle.fluid as fluid
import numpy as np
x = fluid.data(name="x", shape=[2,1], dtype="float32")
res = paddle.log1p(x) # paddle.log1p等价于 paddle.tensor.log1p
# 举例选择CPU计算环境
exe = fluid.Executor(fluid.CPUPlace())
# 执行静态图,输出结果
x_i = np.array([[0], [1]]).astype(np.float32)
res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
print(res_val) # [[0.], [0.6931472]]
.. _cn_api_paddle_tensor_max:
max
-------------------------------
**版本升级,文档正在开发中**
.. py:function:: paddle.tensor.max(input, dim=None, keep_dim=False, out=None, name=None)
该OP是对指定维度上的Tensor元素求最大值运算,并输出相应的计算结果。等价于 :ref:`cn_api_fluid_layers_reduce_max`
参数:
- **input** (Variable)- 输入变量为多维Tensor或LoDTensor,支持数据类型为float32,float64,int32,int64。
- **dim** (list | int ,可选)- 求最大值运算的维度。如果为None,则计算所有元素的最大值并返回包含单个元素的Tensor变量,否则必须在 :math:`[−rank(input),rank(input)]` 范围内。如果 :math:`dim [i] <0` ,则维度将变为 :math:`rank+dim[i]` ,默认值为None。
- **keep_dim** (bool)- 是否在输出Tensor中保留减小的维度。如 keep_dim 为true,否则结果张量的维度将比输入张量小,默认值为False。
- **out** (Variable, 可选) - 指定算子输出结果的LoDTensor/Tensor,可以是程序中已经创建的任何Variable。默认值为None,此时将创建新的Variable来保存输出结果。
- **name** (str, 可选)- 具体用法请参见 :ref:`api_guide_Name` ,一般无需设置,默认值为None。
返回: 在指定dim上进行求最大值运算的Tensor,数据类型和输入数据类型一致。
返回类型: 变量(Variable)
**代码示例**
.. code-block:: python
import paddle
import paddle.fluid as fluid
# x是一个Tensor,元素如下:
# [[0.2, 0.3, 0.5, 0.9]
# [0.1, 0.2, 0.6, 0.7]]
# 接下来的示例中,我们在每处函数调用后面都标注出了它的结果张量。
x = fluid.data(name='x', shape=[2, 4], dtype='float32')
# paddle.max 等价于 paddle.tensor.max
paddle.max(x) # [0.9]
paddle.max(x, dim=0) # [0.2, 0.3, 0.6, 0.9]
paddle.max(x, dim=-1) # [0.9, 0.7]
paddle.max(x, dim=1, keep_dim=True) # [[0.9], [0.7]]
# y是一个shape为[2, 2, 2]的Tensor,元素如下:
# [[[1.0, 2.0], [3.0, 4.0]],
# [[5.0, 6.0], [7.0, 8.0]]]
# 接下来的示例中,我们在每处函数调用后面都标注出了它的结果张量。
y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
paddle.max(y, dim=[1, 2]) # [4.0, 8.0]
paddle.max(y, dim=[0, 1]) # [7.0, 8.0]
.. _cn_api_paddle_tensor_min:
min
-------------------------------
**版本升级,文档正在开发中**
.. py:function:: paddle.tensor.min(input, dim=None, keep_dim=False, out=None, name=None)
该OP是对指定维度上的Tensor元素求最小值运算,并输出相应的计算结果。等价于 :ref:`cn_api_fluid_layers_reduce_min`
参数:
- **input** (Variable)- 输入变量为多维Tensor或LoDTensor,支持数据类型为float32,float64,int32,int64。
- **dim** (list | int ,可选)- 求最小值运算的维度。如果为None,则计算所有元素的最小值并返回包含单个元素的Tensor变量,否则必须在 :math:`[−rank(input),rank(input)]` 范围内。如果 :math:`dim [i] <0` ,则维度将变为 :math:`rank+dim[i]` ,默认值为None。
- **keep_dim** (bool)- 是否在输出Tensor中保留减小的维度。如 keep_dim 为true,否则结果张量的维度将比输入张量小,默认值为False。
- **out** (Variable, 可选) - 指定算子输出结果的LoDTensor/Tensor,可以是程序中已经创建的任何Variable。默认值为None,此时将创建新的Variable来保存输出结果。
- **name** (str, 可选)- 具体用法请参见 :ref:`api_guide_Name` ,一般无需设置,默认值为None。
返回: 在指定dim上进行求最小值运算的Tensor,数据类型和输入数据类型一致。
返回类型: 变量(Variable)
**代码示例**
.. code-block:: python
import paddle
import paddle.fluid as fluid
# x是一个Tensor,元素如下:
# [[0.2, 0.3, 0.5, 0.9]
# [0.1, 0.2, 0.6, 0.7]]
# 接下来的示例中,我们在每处函数调用后面都标注出了它的结果张量。
x = fluid.data(name='x', shape=[2, 4], dtype='float32')
# paddle.min 等价于 paddle.tensor.min
paddle.min(x) # [0.1]
paddle.min(x, dim=0) # [0.1, 0.2, 0.5, 0.7]
paddle.min(x, dim=-1) # [0.2, 0.1]
paddle.min(x, dim=1, keep_dim=True) # [[0.2], [0.1]]
# y是一个shape为[2, 2, 2]的Tensor,元素如下:
# [[[1.0, 2.0], [3.0, 4.0]],
# [[5.0, 6.0], [7.0, 8.0]]]
# 接下来的示例中,我们在每处函数调用后面都标注出了它的结果张量。
y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
paddle.min(y, dim=[1, 2]) # [1.0, 5.0]
paddle.min(y, dim=[0, 1]) # [1.0, 2.0]
.. _cn_api_paddle_tensor_t:
t
-------------------------------
**版本升级,文档正在开发中**
.. py:function:: paddle.tensor.t(input, name=None)
该OP对小于等于2维的Tensor进行数据转置。0维和1维Tensor返回本身,2维Tensor等价于perm设置为0,1的 :ref:`cn_api_fluid_layers_transpose` 函数。
参数:
- **input** (Variable) - 输入:N维(N<=2)Tensor,可选的数据类型为float16, float32, float64, int32, int64。
- **name** (str, 可选)- 该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` ,默认值为None
返回: N维Tensor
返回类型:Variable
**示例**:
.. code-block:: python
# 例1 (0-D tensor)
x = tensor([0.79])
paddle.t(x) = tensor([0.79])
# 例2 (1-D tensor)
x = tensor([0.79, 0.84, 0.32])
paddle.t(x) = tensor([0.79, 0.84, 0.32])
# 例3 (2-D tensor)
x = tensor([0.79, 0.84, 0.32],
[0.64, 0.14, 0.57])
paddle.t(x) = tensor([0.79, 0.64],
[0.84, 0.14],
[0.32, 0.57])
**代码示例**:
.. code-block:: python
import paddle
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[2, 3], dtype='float32')
x_transposed = paddle.t(x) # paddle.t 等价于 paddle.tensor.t
print(x_transposed.shape)
#(3L, 2L)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册