未验证 提交 16c198aa 编写于 作者: W wangchaochaohu 提交者: GitHub

remove some API doc test=develop (#1923)

* removefill_constant_batch_size_like  gaussian_random_batch_size_like  uniform_random_batch_size_like_cn API doc test=develop
上级 748387bd
......@@ -104,7 +104,6 @@ fluid.layers
layers/eye.rst
layers/fc.rst
layers/fill_constant.rst
layers/fill_constant_batch_size_like.rst
layers/filter_by_instag.rst
layers/flatten.rst
layers/floor.rst
......@@ -113,7 +112,6 @@ fluid.layers
layers/gather_nd.rst
layers/gather_tree.rst
layers/gaussian_random.rst
layers/gaussian_random_batch_size_like.rst
layers/gelu.rst
layers/generate_mask_labels.rst
layers/generate_proposal_labels.rst
......@@ -308,7 +306,6 @@ fluid.layers
layers/unfold.rst
layers/Uniform.rst
layers/uniform_random.rst
layers/uniform_random_batch_size_like.rst
layers/unique.rst
layers/unique_with_counts.rst
layers/unsqueeze.rst
......
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_fluid_layers_fill_constant_batch_size_like:
fill_constant_batch_size_like
-----------------------------
.. autofunction:: paddle.fluid.layers.fill_constant_batch_size_like
:noindex:
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_fluid_layers_gaussian_random_batch_size_like:
gaussian_random_batch_size_like
-------------------------------
.. autofunction:: paddle.fluid.layers.gaussian_random_batch_size_like
:noindex:
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_fluid_layers_uniform_random_batch_size_like:
uniform_random_batch_size_like
------------------------------
.. autofunction:: paddle.fluid.layers.uniform_random_batch_size_like
:noindex:
......@@ -108,7 +108,6 @@ fluid.layers
layers_cn/exponential_decay_cn.rst
layers_cn/eye_cn.rst
layers_cn/fc_cn.rst
layers_cn/fill_constant_batch_size_like_cn.rst
layers_cn/fill_constant_cn.rst
layers_cn/filter_by_instag_cn.rst
layers_cn/flatten_cn.rst
......@@ -117,7 +116,6 @@ fluid.layers
layers_cn/gather_cn.rst
layers_cn/gather_nd_cn.rst
layers_cn/gather_tree_cn.rst
layers_cn/gaussian_random_batch_size_like_cn.rst
layers_cn/gaussian_random_cn.rst
layers_cn/gelu_cn.rst
layers_cn/generate_mask_labels_cn.rst
......@@ -313,7 +311,6 @@ fluid.layers
layers_cn/unfold_cn.rst
layers_cn/Uniform_cn.rst
layers_cn/uniform_random_cn.rst
layers_cn/uniform_random_batch_size_like_cn.rst
layers_cn/unique_cn.rst
layers_cn/unique_with_counts_cn.rst
layers_cn/unsqueeze_cn.rst
......
......@@ -31,7 +31,8 @@ continuous_value_model
input=input,
size=[100, 11],
dtype='float32')
ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
label_shape = fluid.layers.shape(label)
ones = fluid.layers.fill_constant(shape=[label_shape[0], 1], dtype="int64", value=1)
show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
show_clk.stop_gradient = True
input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
......
.. _cn_api_fluid_layers_fill_constant_batch_size_like:
fill_constant_batch_size_like
-------------------------------
.. py:function:: paddle.fluid.layers.fill_constant_batch_size_like(input,shape,dtype,value,input_dim_idx=0,output_dim_idx=0,force_cpu=False)
该OP创建一个形状为shape并且数据类型为dtype的Tensor,同时用 ``value`` 中提供的常量初始化该Tensor。在输入为LoDTensor并且input_dim_idx为0的
时候将输出output_dim_idx维度的大小设置为input输入的batch_size的值,创建的Tensor的stop_gradient属性默认为False。
参数:
- **input** (Variable)- 输入的Tensor或者LoDTensor,支持数据类型为 float32, float64, int32, int64,bool。
- **shape** (list)- 创建Tensor的shape,最后创建的LoDTensor的shape可能会依据input发生变动。
- **dtype** (np.dtype|core.VarDesc.VarType|str)- 创建Tensor的数据类型,支持数据类型为 float32, float64, int32, int64,bool。
- **value** (float|int)- 用于初始化输出Tensor的常量数据的值。
- **input_dim_idx** (int)- 当值为0并且输入为LoDTensor的时候,创建Tensor的output_dim_idx维度会设置为input的batch_size值,默认值为0。
- **output_dim_idx** (int) -用于指定创建的Tensor哪个维度设置为输入batch_size的值,默认值为0。
- **force_cpu** (bool)- 用于返回的Tensor是否创建在CPU上,默认值为False,若设为true,则数据在CPU上。
返回:创建的Tensor, 数据类型为dtype。
返回类型:(Variable)
**代码示例**:
.. code-block:: python
import paddle.fluid as fluid
like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
data = fluid.layers.fill_constant_batch_size_like(
input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
\ No newline at end of file
.. _cn_api_fluid_layers_gaussian_random_batch_size_like:
gaussian_random_batch_size_like
-------------------------------
.. py:function:: paddle.fluid.layers.gaussian_random_batch_size_like(input, shape, input_dim_idx=0, output_dim_idx=0, mean=0.0, std=1.0, seed=0, dtype='float32')
使用高斯随机发生器初始化张量。高斯分布的默认均值(mean)为0,默认标准差(std)为 1 。用户可以通过输入参数设置 mean 和 std 。
参数:
- **input** (Variable)- 其 input_dim_idx'th 维度指定 batch_size 的张量(Tensor)。
- **shape** (tuple|list)- 输出的形状。
- **input_dim_idx** (Int)- (默认值0)输入批量大小维度的索引。
- **output_dim_idx** (Int)- (默认值0)输出批量大小维度的索引。
- **mean** (float)- (默认值 0.0)高斯分布的平均值(或中心值)。
- **std** (float)- (默认值 1.0)高斯分布的标准差(std或spread)。
- **seed** (int)- (默认值为 0)用于随机数发生器的随机种子。0表示使用系统生成的种子。请注意,如果seed不为0,则此算子每次将始终生成相同的随机数。
- **dtype** (np.dtype | core.VarDesc.VarType | str)- 输出数据的类型,float32、float_16、int 等。
返回:指定形状的张量,由从高斯分布抽样产生的随机数所填充。
返回类型:Variable
**代码示例:**
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
out = fluid.layers.gaussian_random_batch_size_like(
input, shape=[-1, 11], mean=1.0, std=2.0)
.. _cn_api_fluid_layers_uniform_random_batch_size_like:
uniform_random_batch_size_like
-------------------------------
.. py:function:: paddle.fluid.layers.uniform_random_batch_size_like(input, shape, dtype='float32', input_dim_idx=0, output_dim_idx=0, min=-1.0, max=1.0, seed=0)
该OP使用从范围[min,max)内均匀分布采样的随机值初始化一个Tensor,且输出Tensor的
指定维度将被设置为与输入Tensor指定维度相同的值。
::
示例1:
给定:
input =[[0.946741 , 0.1357001 , 0.38086128]] # input.shape=[1,3]
shape=[2,4]
此时,output_dim_idx = 0, input_dim_idx = 0,result.shape[0] = input.shape[0]
则:
result=[[ 0.3443427 , -0.23056602, 0.3477049 , 0.06139076]] # result.shape=[1,4]
示例2:
给定:
input =[[0.946741 , 0.1357001 , 0.38086128]] # input.shape=[1,3]
shape=[2,4]
input_dim_idx=1
output_dim_idx=1
此时,output_dim_idx = 1, input_dim_idx = 1,result.shape[1] = input.shape[1]
则:
result=[[-0.23133647, -0.84195036, 0.21441269],
[-0.08774924, 0.25605237, -0.09403259]] # result.shape=[2,3]
参数:
- **input** (Variable)- 输入Tensor,支持的数据类型:float32。
- **shape** (list|tuple)- 输出Tensor的维度,类型为list或者tuple。支持的数据类型:int。
- **input_dim_idx** (int,可选)- 输入Tensor指定维度的索引。该参数指定输入Tensor维度的值将用于调整输出Tensor维度的大小。支持的数据类型:int。默认值为0。
- **output_dim_idx** (int,可选)- 输出Tensor指定维度的索引。该参数指定输出Tensor的维度将被设置为与输入Tensor指定维度相同的值。支持的数据类型:int。默认值为0。
- **min** (float,可选)- 要生成的随机值范围的下限,min包含在范围中。支持的数据类型:float。默认值为 1.0。
- **max** (float,可选)- 要生成的随机值范围的上限,max不包含在范围中。支持的数据类型:float。默认值为1.0。
- **seed** (int,可选)- 用于生成样本的随机种子。0表示使用系统生成的种子,数据类型为int。注意如果seed不为0,则此算子将始终每次生成相同的随机数。支持的数据类型:int。默认值为0。
- **dtype** (np.dtype | core.VarDesc.VarType | str,可选) - 输出Tensor的数据类型。支持的数据类型:float32, float64,默认值为float32。
返回: 表示随机初始化结果的Tensor,数据类型由dtype参数设置,该Tensor的维度由shape参数和输入Tensor的指定维度共同决定。
返回类型: Variable
**代码示例:**
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
input = fluid.data(name="input", shape=[13, 11], dtype='float32')
# examp 1:
# input_dim_idx和output_dim_idx使用默认值
out1 = layers.uniform_random_batch_size_like(input, [3, 5])
out1_shape = layers.shape(out1) # [13,5]
# example 2:
# input_dim_idx和output_dim_idx使用指定值
out2=layers.uniform_random_batch_size_like(input, [3, 5], input_dim_idx=1, output_dim_idx=1)
out2_shape = layers.shape(out2) # [3,11]
......@@ -56,64 +56,56 @@ Fluid 使用 :code:`sums` 执行对输入数据的加和。
API reference 请参考::ref:`cn_api_fluid_layers_sums`
7. fill_constant_batch_size_like
---------------------------------
Fluid 使用 :code:`fill_constant_batch_size_like` 创建一个具有特定形状、类型和 batch_size 的 Tensor。并且该Tensor的初始值可以被指定为任意常数。其中 batch_size 信息由该tensor的 :code:`input_dim_idx` 和 :code:`output_dim_idx` 确定。
API reference 请参考::ref:`cn_api_fluid_layers_fill_constant_batch_size_like`
8. fill_constant
7. fill_constant
-----------------
Fluid 使用 :code:`fill_constant` 创建一个具有特定形状和类型的 Tensor。可以通过 :code:`value` 设置该变量的初始值。
API reference 请参考: :ref:`cn_api_fluid_layers_fill_constant`
9. assign
8. assign
---------------
Fluid 使用 :code:`assign` 复制一个变量。
API reference 请参考::ref:`cn_api_fluid_layers_assign`
10. argmin
9. argmin
--------------
Fluid 使用 :code:`argmin` 计算输入 Tensor 指定轴上最小元素的索引。
API reference 请参考::ref:`cn_api_fluid_layers_assign`
11. argmax
10. argmax
-----------
Fluid 使用 :code:`argmax` 计算输入 Tensor 指定轴上最大元素的索引。
API reference 请参考::ref:`cn_api_fluid_layers_argmax`
12. argsort
11. argsort
------------
Fluid 使用 :code:`argsort` 对输入 Tensor 在指定轴上进行排序,并返回排序后的数据变量及其对应的索引值。
API reference 请参考: :ref:`cn_api_fluid_layers_argsort`
13. ones
12. ones
-------------
Fluid 使用 :code:`ones` 创建一个指定大小和数据类型的Tensor,且初始值为1。
API reference 请参考: :ref:`cn_api_fluid_layers_ones`
14. zeros
13. zeros
---------------
Fluid 使用 :code:`zeros` 创建一个指定大小和数据类型的Tensor,且初始值为0。
API reference 请参考: :ref:`cn_api_fluid_layers_zeros`
15. reverse
14. reverse
-------------------
Fluid 使用 :code:`reverse` 沿指定轴反转 Tensor。
......@@ -146,4 +138,4 @@ API reference 请参考: :ref:`cn_api_fluid_create_random_int_lodtensor`
Fluid 使用 :code:`reorder_lod_tensor_by_rank` 对输入 LoD_Tensor 的序列信息按指定顺序重拍。
API reference 请参考::ref:`cn_api_fluid_layers_reorder_lod_tensor_by_rank`
\ No newline at end of file
API reference 请参考::ref:`cn_api_fluid_layers_reorder_lod_tensor_by_rank`
......@@ -56,64 +56,56 @@ Fluid uses :code:`sums` to sum up the input data.
API reference : :ref:`api_fluid_layers_sums`
7. fill_constant_batch_size_like
---------------------------------
Fluid uses :code:`fill_constant_batch_size_like` to create a Tensor with a specific shape, type, and batch_size. And the initial value of the Tensor can be specified as an arbitrary constant. The batch_size information is determined by the tensor's :code:`input_dim_idx` and :code:`output_dim_idx`.
API reference : :ref:`api_fluid_layers_fill_constant_batch_size_like`
8. fill_constant
7. fill_constant
-----------------
Fluid uses :code:`fill_constant` to create a Tensor with a specific shape and type. The initial value of this variable can be set via :code:`value`.
API reference : :ref:`api_fluid_layers_fill_constant`
9. assign
8. assign
---------------
Fluid uses :code:`assign` to duplicate a variable.
API reference : :ref:`api_fluid_layers_assign`
10. argmin
9. argmin
--------------
Fluid uses :code:`argmin` to calculate the index of the smallest element on the specified axis of Tensor.
API reference : :ref:`api_fluid_layers_argmin`
11. argmax
10. argmax
-----------
Fluid uses :code:`argmax` to calculate the index of the largest element on the specified axis of Tensor.
API reference : :ref:`api_fluid_layers_argmax`
12. argsort
11. argsort
------------
Fluid uses :code:`argsort` to sort the input Tensor on the specified axis and it will return the sorted data variables and their corresponding index values.
API reference : :ref:`api_fluid_layers_argsort`
13. ones
12. ones
-------------
Fluid uses :code:`ones` to create a Tensor of the specified size and data type with an initial value of 1.
API reference : :ref:`api_fluid_layers_ones`
14. zeros
13. zeros
---------------
Fluid uses :code:`zeros` to create a Tensor of the specified size and data type with an initial value of zero.
API reference : :ref:`api_fluid_layers_zeros`
15. reverse
14. reverse
-------------------
Fluid uses :code:`reverse` to invert Tensor along the specified axis.
......@@ -146,4 +138,4 @@ API reference : :ref:`api_fluid_create_random_int_lodtensor`
Fluid uses :code:`reorder_lod_tensor_by_rank` to reorder the sequence information of the input LoD_Tensor in the specified order.
API reference : :ref:`api_fluid_layers_reorder_lod_tensor_by_rank`
\ No newline at end of file
API reference : :ref:`api_fluid_layers_reorder_lod_tensor_by_rank`
......@@ -285,10 +285,11 @@ with fluid.program_guard(dg_program):
dg_logit = D(g_img)
# 计算生成图片被判别为真实样本的loss
noise_shape = fluid.layers.shape(noise)
dg_loss = loss(
dg_logit,
fluid.layers.fill_constant_batch_size_like(
input=noise, dtype='float32', shape=[-1, 1], value=1.0))
fluid.layers.fill_constant(
dtype='float32', shape=[noise_shape[0], 1], value=1.0))
```
使用adam作为优化器,分别优化判别真实图片的loss和判别生成图片的loss。
......
......@@ -284,10 +284,11 @@ with fluid.program_guard(dg_program):
dg_logit = D(g_img)
# Calculate the loss of the generated image as the real sample
noise_shape = fluid.layers.shape(noise)
dg_loss = loss(
dg_logit,
fluid.layers.fill_constant_batch_size_like(
input=noise, dtype='float32', shape=[-1, 1], value=1.0))
fluid.layers.fill_constant(
dtype='float32', shape=[noise_shape[0], 1], value=1.0))
```
Adam is used as the optimizer to distinguish the loss of the real picture and the loss of the generated picture.
......
......@@ -74,11 +74,11 @@ def train(args):
g_program_test = dg_program.clone(for_test=True)
dg_logit = D(g_img)
noise_shape = fluid.layers.shape(noise)
dg_loss = loss(dg_logit,
fluid.layers.fill_constant_batch_size_like(
input=noise,
fluid.layers.fill_constant(
dtype='float32',
shape=[-1, 1],
shape=[noise_shape[0], 1],
value=1.0))
opt = fluid.optimizer.Adam(learning_rate=LEARNING_RATE)
......
......@@ -327,10 +327,11 @@ with fluid.program_guard(dg_program):
dg_logit = D(g_img)
# 计算生成图片被判别为真实样本的loss
noise_shape = fluid.layers.shape(noise)
dg_loss = loss(
dg_logit,
fluid.layers.fill_constant_batch_size_like(
input=noise, dtype='float32', shape=[-1, 1], value=1.0))
fluid.layers.fill_constant(
dtype='float32', shape=[noise_shape[0], 1], value=1.0))
```
使用adam作为优化器,分别优化判别真实图片的loss和判别生成图片的loss。
......
......@@ -326,10 +326,11 @@ with fluid.program_guard(dg_program):
dg_logit = D(g_img)
# Calculate the loss of the generated image as the real sample
noise_shape = fluid.layers.shape(noise)
dg_loss = loss(
dg_logit,
fluid.layers.fill_constant_batch_size_like(
input=noise, dtype='float32', shape=[-1, 1], value=1.0))
fluid.layers.fill_constant(
dtype='float32', shape=[noise_shape[0], 1], value=1.0))
```
Adam is used as the optimizer to distinguish the loss of the real picture and the loss of the generated picture.
......
......@@ -89,8 +89,9 @@ def deconv(x,
def conv_cond_concat(x, y):
"""Concatenate conditioning vector on feature map axis."""
ones = fluid.layers.fill_constant_batch_size_like(
x, [-1, y.shape[1], x.shape[2], x.shape[3]], "float32", 1.0)
x_shape = fluid.layers.shape(x)
ones = fluid.layers.fill_constant(
x, [x_shape[0], y.shape[1], x.shape[2], x.shape[3]], "float32", 1.0)
return fluid.layers.concat([x, ones * y], 1)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册