Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
FluidDoc
提交
107d113c
F
FluidDoc
项目概览
PaddlePaddle
/
FluidDoc
通知
7
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
23
列表
看板
标记
里程碑
合并请求
111
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
F
FluidDoc
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
23
Issue
23
列表
看板
标记
里程碑
合并请求
111
合并请求
111
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
107d113c
编写于
3月 24, 2020
作者:
D
Double_V
提交者:
GitHub
3月 24, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update ctc_greedy_decoder chinese doc, test=document_preview (#1935)
上级
d9e300b1
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
36 addition
and
4 deletion
+36
-4
doc/fluid/api_cn/layers_cn/ctc_greedy_decoder_cn.rst
doc/fluid/api_cn/layers_cn/ctc_greedy_decoder_cn.rst
+36
-4
未找到文件。
doc/fluid/api_cn/layers_cn/ctc_greedy_decoder_cn.rst
浏览文件 @
107d113c
...
...
@@ -5,17 +5,18 @@ ctc_greedy_decoder
.. py:function:: paddle.fluid.layers.ctc_greedy_decoder(input, blank, name=None)
**注意:该OP的输入input必须是2维LoDTensor, lod_level为1**
该OP用于贪婪策略解码序列,步骤如下:
1. 获取输入中的每一行的最大值索引,也就是numpy.argmax(input, axis=0)。
2. 对于step1结果中的每个序列,合并两个空格之间的重复部分并删除所有空格。
该API支持两种输入,LoDTensor和Tensor输入,不同输入的代码样例如下:
**样例**:
::
# for lod tensor input
已知:
input.data = [[0.6, 0.1, 0.3, 0.1],
...
...
@@ -45,13 +46,38 @@ ctc_greedy_decoder
output.lod = [[2, 1]]
# for tensor input
input.data = [[[0.6, 0.1, 0.3, 0.1],
[0.3, 0.2, 0.4, 0.1],
[0.1, 0.5, 0.1, 0.3],
[0.5, 0.1, 0.3, 0.1]],
[[0.5, 0.1, 0.3, 0.1],
[0.2, 0.2, 0.2, 0.4],
[0.2, 0.2, 0.1, 0.5],
[0.5, 0.1, 0.3, 0.1]]]
input_length.data = [[4], [4]]
input.shape = [2, 4, 4]
step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
[[0], [2], [1], [0]], for input.data[4:8] is [[0], [3], [3], [0]], shape is [2,4,1]
step2: Change the argmax result to use padding mode, then argmax result is
[[0, 2, 1, 0], [0, 3, 3, 0]], shape is [2, 4], lod is [], input_length is [[4], [4]]
step3: Apply ctc_align to padding argmax result, padding_value is 0
Finally:
output.data = [[2, 1, 0, 0],
[3, 0, 0, 0]]
output_length.data = [[2], [1]]
参数:
- **input** (Variable) — 变长序列的概率,
2维LoDTensor, lod_level为1。它的形状是[Lp, num_classes + 1],其中Lp是所有输入序列长度的和,num_classes是类别数目(不包括空白标签)。数据类型是float32或者float64
- **input** (Variable) — 变长序列的概率,
在输入为LoDTensor情况下,它是具有LoD信息的二维LoDTensor。 形状为[Lp,num_classes +1],其中Lp是所有输入序列的长度之和,num_classes是真实的类数。 在输入为Tensor情况下,它是带有填充的3-D张量,其形状为[batch_size,N,num_classes +1]。 (不包括空白标签)。 数据类型可以是float32或float64。
- **blank** (int) — Connectionist Temporal Classification (CTC) loss空白标签索引, 其数值属于半开区间[0,num_classes + 1)
- **name** (str) — (str|None,可选) – 该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` ,默认值为None
返回:
CTC贪婪解码结果是一个形为(Lp,1)的2维LoDTensor,lod_level为1,其中Lp是所有输出序列的长度之和。如果结果中的所有序列都为空,则输出LoDTensor为[-1],其lod信息为空
。
返回:
对于输入为LoDTensor的情况,返回CTC贪婪解码器的结果,即2-D LoDTensor,形状为[Lp,1],数据类型为int64。 “ Lp”是所有输出序列长度的总和。 如果结果中的所有序列均为空,则结果LoDTensor将为[-1],其中LoD为[[]]。对于输入为Tensor的情况,返回一个元组,(output, output_length), 其中,output是一个形状为 [batch_size, N],类型为int64的Tensor。output_length是一个形状为[batch_size, 1],类型为int64的Tensor,表示Tensor输入下,每个输出序列的长度
。
返回类型: Variable
...
...
@@ -60,9 +86,15 @@ ctc_greedy_decoder
.. code-block:: python
# for lod mode
import paddle.fluid as fluid
x = fluid.
layers.data(name='x', shape=[8], dtype='float32'
)
x = fluid.
data(name='x', shape=[None, 8], dtype='float32', lod_level=1
)
cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
# for padding mode
x_pad = fluid.data(name='x_pad', shape=[10, 4, 8], dtype='float32')
x_pad_len = fluid.data(name='x_pad_len', shape=[10, 1], dtype='int64')
out, out_len = fluid.layers.ctc_greedy_decoder(input=x_pad, blank=0,
input_length=x_pad_len)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录