未验证 提交 0f834bf4 编写于 作者: L Leo Chen 提交者: GitHub

update cn doc of Pool2D, test=develop (#2178)

上级 463b1099
......@@ -3,7 +3,7 @@
Pool2D
-------------------------------
.. py:class:: paddle.fluid.dygraph.Pool2D(pool_size=-1, pool_type='max', pool_stride=1, pool_padding=0, global_pooling=False, use_cudnn=True, ceil_mode=False, exclusive=True)
.. py:class:: paddle.fluid.dygraph.Pool2D(pool_size=-1, pool_type='max', pool_stride=1, pool_padding=0, global_pooling=False, use_cudnn=True, ceil_mode=False, exclusive=True, data_format="NCHW")
:alias_main: paddle.nn.Pool2D
:alias: paddle.nn.Pool2D,paddle.nn.layer.Pool2D,paddle.nn.layer.common.Pool2D
......@@ -13,7 +13,7 @@ Pool2D
该接口用于构建 ``Pool2D`` 类的一个可调用对象,具体用法参照 ``代码示例`` 。其将在神经网络中构建一个二维池化层,并使用上述输入参数的池化配置,为二维空间池化操作,根据 ``input`` , 池化类型 ``pool_type`` , 池化核大小 ``pool_size`` , 步长 ``pool_stride`` ,填充 ``pool_padding`` 这些参数得到输出。
输入X和输出Out是NCHW格式,N为批大小,C是通道数,H是特征高度,W是特征宽度。参数( ``ksize``, ``strides``, ``paddings`` )含有两个整型元素。分别表示高度和宽度上的参数。输入X的大小和输出Out的大小可能不一致。
输入X和输出Out默认是NCHW格式,N为批大小,C是通道数,H是特征高度,W是特征宽度。参数( ``ksize``, ``strides``, ``paddings`` )含有两个整型元素。分别表示高度和宽度上的参数。输入X的大小和输出Out的大小可能不一致。
例如:
......@@ -66,13 +66,15 @@ Pool2D
- **use_cudnn** (bool, 可选)- 是否用cudnn核,只有已安装cudnn库时才有效。默认True。
- **ceil_mode** (bool, 可选)- 是否用ceil函数计算输出高度和宽度。如果设为False,则使用floor函数。默认为False。
- **exclusive** (bool, 可选) - 是否在平均池化模式忽略填充值。默认为True。
- **data_format** (str,可选) - 指定输入的数据格式,输出的数据格式将与输入保持一致,可以是"NCHW"和"NHWC"。N是批尺寸,C是通道数,H是特征高度,W是特征宽度。默认值:"NCHW"。
返回:无
抛出异常:
- ``ValueError`` - 如果 ``pool_type`` 既不是“max”也不是“avg”
- ``ValueError`` - 如果 ``global_pooling`` 为False并且‘pool_size’为-1
- ``ValueError`` - 如果 ``use_cudnn`` 不是bool值
- ``ValueError`` - 如果 ``pool_type`` 既不是“max”也不是“avg”。
- ``ValueError`` - 如果 ``global_pooling`` 为False并且 ``pool_size`` 为-1。
- ``ValueError`` - 如果 ``use_cudnn`` 不是bool值。
- ``ValueError`` - 如果 ``data_format`` 既不是"NCHW"也不是"NHWC"。
**代码示例**
......@@ -80,9 +82,10 @@ Pool2D
import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable
import numpy as np
with fluid.dygraph.guard():
data = numpy.random.random((3, 32, 32, 5)).astype('float32')
data = np.random.random((3, 32, 32, 5)).astype('float32')
pool2d = fluid.dygraph.Pool2D(pool_size=2,
pool_type='max',
pool_stride=1,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册