Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
FluidDoc
提交
0ea3df96
F
FluidDoc
项目概览
PaddlePaddle
/
FluidDoc
通知
8
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
23
列表
看板
标记
里程碑
合并请求
111
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
F
FluidDoc
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
23
Issue
23
列表
看板
标记
里程碑
合并请求
111
合并请求
111
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0ea3df96
编写于
3月 12, 2019
作者:
H
Hao Wang
提交者:
Cheerego
3月 12, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix layers. ==> fluid.layers. (#688)
上级
2f163ad8
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
79 addition
and
79 deletion
+79
-79
doc/fluid/api_cn/fluid_cn.rst
doc/fluid/api_cn/fluid_cn.rst
+3
-3
doc/fluid/api_cn/initializer_cn.rst
doc/fluid/api_cn/initializer_cn.rst
+1
-1
doc/fluid/api_cn/layers_cn.rst
doc/fluid/api_cn/layers_cn.rst
+74
-74
doc/fluid/api_cn/metrics_cn.rst
doc/fluid/api_cn/metrics_cn.rst
+1
-1
未找到文件。
doc/fluid/api_cn/fluid_cn.rst
浏览文件 @
0ea3df96
...
...
@@ -1015,10 +1015,10 @@ feed map为该program提供输入数据。fetch_list提供program训练结束后
.. code-block:: python
data = layers.data(name='X', shape=[1], dtype='float32')
hidden = layers.fc(input=data, size=10)
data =
fluid.
layers.data(name='X', shape=[1], dtype='float32')
hidden =
fluid.
layers.fc(input=data, size=10)
layers.assign(hidden, out)
loss = layers.mean(out)
loss =
fluid.
layers.mean(out)
adam = fluid.optimizer.Adam()
adam.minimize(loss)
...
...
doc/fluid/api_cn/initializer_cn.rst
浏览文件 @
0ea3df96
...
...
@@ -125,7 +125,7 @@ init_on_cpu
.. code-block:: python
with init_on_cpu():
step = layers.create_global_var()
step =
fluid.
layers.create_global_var()
...
...
doc/fluid/api_cn/layers_cn.rst
浏览文件 @
0ea3df96
...
...
@@ -117,7 +117,7 @@ array_write
tmp = fluid.layers.zeros(shape=[10], dtype='int32')
i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
arr = layers.array_write(tmp, i=i)
arr =
fluid.
layers.array_write(tmp, i=i)
...
...
@@ -704,15 +704,15 @@ While
.. code-block:: python
d0 = layers.data("d0", shape=[10], dtype='float32')
data_array = layers.array_write(x=d0, i=i)
array_len = layers.fill_constant(shape=[1],dtype='int64', value=3)
d0 =
fluid.
layers.data("d0", shape=[10], dtype='float32')
data_array =
fluid.
layers.array_write(x=d0, i=i)
array_len =
fluid.
layers.fill_constant(shape=[1],dtype='int64', value=3)
cond = layers.less_than(x=i, y=array_len)
while_op = layers.While(cond=cond)
cond =
fluid.
layers.less_than(x=i, y=array_len)
while_op =
fluid.
layers.While(cond=cond)
with while_op.block():
d = layers.array_read(array=data_array, i=i)
i = layers.increment(x=i, in_place=True)
d =
fluid.
layers.array_read(array=data_array, i=i)
i =
fluid.
layers.increment(x=i, in_place=True)
layers.array_write(result, i=i, array=d)
layers.less_than(x=i, y=array_len, cond=cond)
...
...
@@ -1761,13 +1761,13 @@ beam_search
# 假设 `probs` 包含计算神经元所得的预测结果
# `pre_ids` 和 `pre_scores` 为beam_search之前时间步的输出
topk_scores, topk_indices = layers.topk(probs, k=beam_size)
accu_scores = layers.elementwise_add(
topk_scores, topk_indices =
fluid.
layers.topk(probs, k=beam_size)
accu_scores =
fluid.
layers.elementwise_add(
x=layers.log(x=topk_scores)),
y=layers.reshape(
pre_scores, shape=[-1]),
axis=0)
selected_ids, selected_scores = layers.beam_search(
selected_ids, selected_scores =
fluid.
layers.beam_search(
pre_ids=pre_ids,
pre_scores=pre_scores,
ids=topk_indices,
...
...
@@ -1816,7 +1816,7 @@ beam_search_decode
# 假设 `ids` 和 `scores` 为 LodTensorArray变量,它们保留了
# 选择出的所有时间步的id和score
finished_ids, finished_scores = layers.beam_search_decode(
finished_ids, finished_scores =
fluid.
layers.beam_search_decode(
ids, scores, beam_size=5, end_id=0)
...
...
@@ -2536,7 +2536,7 @@ crf_decoding
.. code-block:: python
crf_decode = layers.crf_decoding(
crf_decode =
fluid.
layers.crf_decoding(
input=hidden, param_attr=ParamAttr(name="crfw"))
...
...
@@ -3982,7 +3982,7 @@ gaussian_random算子。
.. code-block:: python
out = layers.gaussian_random(shape=[20, 30])
out =
fluid.
layers.gaussian_random(shape=[20, 30])
...
...
@@ -4020,9 +4020,9 @@ gaussian_random_batch_size_like
.. code-block:: python
input = layers.data(name="input", shape=[13, 11], dtype='float32')
input =
fluid.
layers.data(name="input", shape=[13, 11], dtype='float32')
out = layers.gaussian_random_batch_size_like(
out =
fluid.
layers.gaussian_random_batch_size_like(
input, shape=[-1, 11], mean=1.0, std=2.0)
...
...
@@ -4786,9 +4786,9 @@ label_smooth
.. code-block:: python
label = layers.data(name="label", shape=[1], dtype="float32")
one_hot_label = layers.one_hot(input=label, depth=10)
smooth_label = layers.label_smooth(
label =
fluid.
layers.data(name="label", shape=[1], dtype="float32")
one_hot_label =
fluid.
layers.one_hot(input=label, depth=10)
smooth_label =
fluid.
layers.label_smooth(
label=one_hot_label, epsilon=0.1, dtype="float32")
...
...
@@ -5033,9 +5033,9 @@ lod_reset
.. code-block:: python
x = layers.data(name='x', shape=[10])
y = layers.data(name='y', shape=[10, 20], lod_level=2)
out = layers.lod_reset(x=x, y=y)
x =
fluid.
layers.data(name='x', shape=[10])
y =
fluid.
layers.data(name='y', shape=[10, 20], lod_level=2)
out =
fluid.
layers.lod_reset(x=x, y=y)
...
...
@@ -5413,10 +5413,10 @@ sigmoid的计算公式为: :math:`sigmoid(x) = 1 / (1 + e^{-x})` 。
input_size = 100
hidden_size = 150
num_layers = 1
init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
init_hidden1 =
fluid.
layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
init_cell1 =
fluid.
layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, max_len, dropout_prob, input_size, hidden_size, num_layers)
rnn_out, last_h, last_c =
fluid.
layers.lstm( input, init_h, init_c, max_len, dropout_prob, input_size, hidden_size, num_layers)
...
...
@@ -5912,18 +5912,18 @@ nce
if i == label_word:
continue
emb = layers.embedding(input=words[i], size=[dict_size, 32],
emb =
fluid.
layers.embedding(input=words[i], size=[dict_size, 32],
param_attr='emb.w', is_sparse=True)
embs.append(emb)
embs = layers.concat(input=embs, axis=1)
loss = layers.nce(input=embs, label=words[label_word],
embs =
fluid.
layers.concat(input=embs, axis=1)
loss =
fluid.
layers.nce(input=embs, label=words[label_word],
num_total_classes=dict_size, param_attr='nce.w',
bias_attr='nce.b')
#使用custom distribution
dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
loss = layers.nce(input=embs, label=words[label_word],
loss =
fluid.
layers.nce(input=embs, label=words[label_word],
num_total_classes=5, param_attr='nce.w',
bias_attr='nce.b',
num_neg_samples=3,
...
...
@@ -5960,8 +5960,8 @@ one_hot
.. code-block:: python
label = layers.data(name="label", shape=[1], dtype="float32")
one_hot_label = layers.one_hot(input=label, depth=10)
label =
fluid.
layers.data(name="label", shape=[1], dtype="float32")
one_hot_label =
fluid.
layers.one_hot(input=label, depth=10)
...
...
@@ -7316,13 +7316,13 @@ sampling_id算子。用于从输入的多项分布中对id进行采样的图层
.. code-block:: python
x = layers.data(
x =
fluid.
layers.data(
name="X",
shape=[13, 11],
dtype='float32',
append_batch_size=False)
out = layers.sampling_id(x)
out =
fluid.
layers.sampling_id(x)
...
...
@@ -7631,7 +7631,7 @@ sequence_expand
x = fluid.layers.data(name='x', shape=[10], dtype='float32')
y = fluid.layers.data(name='y', shape=[10, 20],
dtype='float32', lod_level=1)
out = layers.sequence_expand(x=x, y=y, ref_level=0)
out =
fluid.
layers.sequence_expand(x=x, y=y, ref_level=0)
...
...
@@ -7701,7 +7701,7 @@ Sequence Expand As Layer
x = fluid.layers.data(name='x', shape=[10], dtype='float32')
y = fluid.layers.data(name='y', shape=[10, 20],
dtype='float32', lod_level=1)
out = layers.sequence_expand_as(x=x, y=y)
out =
fluid.
layers.sequence_expand_as(x=x, y=y)
...
...
@@ -8354,9 +8354,9 @@ shape算子
.. code-block:: python
input = layers.data(
input =
fluid.
layers.data(
name="input", shape=[3, 100, 100], dtype="float32")
out = layers.shape(input)
out =
fluid.
layers.shape(input)
...
...
@@ -8645,10 +8645,10 @@ slice算子。
ends = [3, 3, 4]
axes = [0, 1, 2]
input = layers.data(
input =
fluid.
layers.data(
name="input", shape=[3, 4, 5, 6], dtype='float32')
out = layers.slice(input, axes=axes, starts=starts, ends=ends)
out =
fluid.
layers.slice(input, axes=axes, starts=starts, ends=ends)
...
...
@@ -8966,9 +8966,9 @@ square_error_cost
.. code-block:: python
y = layers.data(name='y', shape=[1], dtype='float32')
y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
cost = layers.square_error_cost(input=y_predict, label=y)
y =
fluid.
layers.data(name='y', shape=[1], dtype='float32')
y_predict =
fluid.
layers.data(name='y_predict', shape=[1], dtype='float32')
cost =
fluid.
layers.square_error_cost(input=y_predict, label=y)
...
...
@@ -9018,8 +9018,8 @@ squeeze
.. code-block:: python
x = layers.data(name='x', shape=[5, 1, 10])
y = layers.sequeeze(input=x, axes=[1])
x =
fluid.
layers.data(name='x', shape=[5, 1, 10])
y =
fluid.
layers.sequeeze(input=x, axes=[1])
...
...
@@ -9118,8 +9118,8 @@ sum算子。
.. code-block:: python
input = layers.data(name="input", shape=[13, 11], dtype='float32')
out = layers.sum(input)
input =
fluid.
layers.data(name="input", shape=[13, 11], dtype='float32')
out =
fluid.
layers.sum(input)
...
...
@@ -9242,7 +9242,7 @@ topk
.. code-block:: python
top5_values, top5_indices = layers.topk(input, k=5)
top5_values, top5_indices =
fluid.
layers.topk(input, k=5)
...
...
@@ -9280,7 +9280,7 @@ transpose
# 在数据张量中添加多余的batch大小维度
x = fluid.layers.data(name='x', shape=[5, 10, 15],
dtype='float32', append_batch_size=False)
x_transposed = layers.transpose(x, perm=[1, 0, 2])
x_transposed =
fluid.
layers.transpose(x, perm=[1, 0, 2])
...
...
@@ -9316,21 +9316,21 @@ tree_conv
.. code-block:: python
nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
nodes_vector =
fluid.
layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
# batch size为None, 10代表数据集最大节点大小max_node_size,5表示向量宽度
edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
edge_set =
fluid.
layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
# None 代表batch size, 10 代表数据集的最大节点大小max_node_size, 2 代表每条边连接两个节点
# 边必须为有向边
out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
out_vector =
fluid.
layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
# 输出的形会是[None, 10, 6, 1],
# None 代表batch size, 10数据集的最大节点大小max_node_size, 6 代表输出大小output size, 1 代表 1 个filter
out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
out_vector =
fluid.
layers.reshape(out_vector, shape=[None, 10, 6])
# reshape之后, 输出张量output tensor为下一个树卷积的nodes_vector
out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
out_vector_2 =
fluid.
layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
# 输出tensor也可以用来池化(论文中称为global pooling)
pooled = layers.reduce_max(out_vector, dims=2) # global 池化
pooled =
fluid.
layers.reduce_max(out_vector, dims=2) # global 池化
...
...
@@ -9376,8 +9376,8 @@ uniform_random_batch_size_like算子。
.. code-block:: python
input = layers.data(name="input", shape=[13, 11], dtype='float32')
out = layers.uniform_random_batch_size_like(input, [-1, 11])
input =
fluid.
layers.data(name="input", shape=[13, 11], dtype='float32')
out =
fluid.
layers.uniform_random_batch_size_like(input, [-1, 11])
...
...
@@ -9408,8 +9408,8 @@ unsqueeze
.. code-block:: python
x = layers.data(name='x', shape=[5, 10])
y = layers.unsequeeze(input=x, axes=[1])
x =
fluid.
layers.data(name='x', shape=[5, 10])
y =
fluid.
layers.unsequeeze(input=x, axes=[1])
...
...
@@ -10686,12 +10686,12 @@ sums
tmp = fluid.layers.zeros(shape=[10], dtype='int32')
i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
a0 = layers.array_read(array=tmp, i=i)
i = layers.increment(x=i)
a1 = layers.array_read(array=tmp, i=i)
mean_a0 = layers.mean(a0)
mean_a1 = layers.mean(a1)
a_sum = layers.sums(input=[mean_a0, mean_a1])
a0 =
fluid.
layers.array_read(array=tmp, i=i)
i =
fluid.
layers.increment(x=i)
a1 =
fluid.
layers.array_read(array=tmp, i=i)
mean_a0 =
fluid.
layers.mean(a0)
mean_a1 =
fluid.
layers.mean(a1)
a_sum =
fluid.
layers.sums(input=[mean_a0, mean_a1])
...
...
@@ -11482,13 +11482,13 @@ Detection Output Layer for Single Shot Multibox Detector(SSD)
.. code-block:: python
pb = layers.data(name='prior_box', shape=[10, 4],
pb =
fluid.
layers.data(name='prior_box', shape=[10, 4],
append_batch_size=False, dtype='float32')
pbv = layers.data(name='prior_box_var', shape=[10, 4],
pbv =
fluid.
layers.data(name='prior_box_var', shape=[10, 4],
append_batch_size=False, dtype='float32')
loc = layers.data(name='target_box', shape=[2, 21, 4],
loc =
fluid.
layers.data(name='target_box', shape=[2, 21, 4],
append_batch_size=False, dtype='float32')
scores = layers.data(name='scores', shape=[2, 21, 10],
scores =
fluid.
layers.data(name='scores', shape=[2, 21, 10],
append_batch_size=False, dtype='float32')
nmsed_outs = fluid.layers.detection_output(scores=scores,
loc=loc,
...
...
@@ -11997,13 +11997,13 @@ rpn_target_assign
.. code-block:: python
bbox_pred = layers.data(name=’bbox_pred’, shape=[100, 4],
bbox_pred =
fluid.
layers.data(name=’bbox_pred’, shape=[100, 4],
append_batch_size=False, dtype=’float32’)
cls_logits = layers.data(name=’cls_logits’, shape=[100, 1],
cls_logits =
fluid.
layers.data(name=’cls_logits’, shape=[100, 1],
append_batch_size=False, dtype=’float32’)
anchor_box = layers.data(name=’anchor_box’, shape=[20, 4],
anchor_box =
fluid.
layers.data(name=’anchor_box’, shape=[20, 4],
append_batch_size=False, dtype=’float32’)
gt_boxes = layers.data(name=’gt_boxes’, shape=[10, 4],
gt_boxes =
fluid.
layers.data(name=’gt_boxes’, shape=[10, 4],
append_batch_size=False, dtype=’float32’)
loc_pred, score_pred, loc_target, score_target, bbox_inside_weight=
fluid.layers.rpn_target_assign(bbox_pred=bbox_pred,
...
...
@@ -12162,9 +12162,9 @@ target_assign
.. code-block:: python
matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
gt = layers.data(
gt =
fluid.
layers.data(
name='gt', shape=[1, 1], dtype='int32', lod_level=1)
trg, trg_weight = layers.target_assign(
trg, trg_weight =
fluid.
layers.target_assign(
gt, matched_indices, mismatch_value=0)
...
...
doc/fluid/api_cn/metrics_cn.rst
浏览文件 @
0ea3df96
...
...
@@ -105,7 +105,7 @@ ChunkEvaluator
labels = fluid.layers.data(name="data", shape=[1], dtype="int32")
data = fluid.layers.data(name="data", shape=[32, 32], dtype="int32")
pred = fluid.layers.fc(input=data, size=1000, act="tanh")
precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks = layers.chunk_eval(
precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks =
fluid.
layers.chunk_eval(
input=pred,
label=label)
metric = fluid.metrics.ChunkEvaluator()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录