Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
FluidDoc
提交
0b20f8f6
F
FluidDoc
项目概览
PaddlePaddle
/
FluidDoc
通知
5
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
23
列表
看板
标记
里程碑
合并请求
111
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
F
FluidDoc
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
23
Issue
23
列表
看板
标记
里程碑
合并请求
111
合并请求
111
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
0b20f8f6
编写于
6月 27, 2018
作者:
Y
yuyang18
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Convert markdown to rst
上级
f5b698f4
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
143 addition
and
105 deletion
+143
-105
source/user_guides/howto/training/cluster_quick_start.md
source/user_guides/howto/training/cluster_quick_start.md
+0
-105
source/user_guides/howto/training/cluster_quick_start.rst
source/user_guides/howto/training/cluster_quick_start.rst
+143
-0
未找到文件。
source/user_guides/howto/training/cluster_quick_start.md
已删除
100644 → 0
浏览文件 @
f5b698f4
```
eval_rst
.. _cluster_quick_start:
```
# 分布式训练快速开始
## 准备工作
在本篇文章中,我们将会在介绍如何快速在一个集群中启动一个 PaddlePaddle 的分布式训练任务,在开始之前,请按如下步骤做些准备工作:
1.
准备一个至少4个节点的集群,并且保证网络可以联通,在本文中我们使用
`*.paddlepaddle.com`
来表示每个节点的主机名称,您可以根据集群的实际情况来修改它。
2.
在开始之前确保已经阅读过
[
安装指南
](
quick_start_install
)
并且可以在集群的所有节点上可以正常运行 PaddlePaddle.
## 启动集群训练任务
在启动集群训练脚本时,需要在不同的节点上指定不同的环境变量,具体如下:
| 环境变量 | 数据类型 | 样例 | 描述 |
| -- | -- | -- | -- |
| PADDLE_TRAINING_ROLE | str | PSERVER,TRAINER | 训练节点的角色 |
| PADDLE_PSERVER_IPS | str | ps0.paddlepaddle.com,ps1.paddlepaddle.com... | 所有 pserver 节点的 IP 地址或 hostname, 用","分隔 |
| PADDLE_PSERVER_PORT | int | 6174 | pserver 节点监听的端口 |
| PADDLE_TRAINERS | int | 2 | 训练任务中 trainer 节点的数量 |
| PADDLE_CURRENT_IP | str | ps0.paddlepaddle.com | 当前 pserver 节点的 IP 地址或 hostanme |
| PADDLE_TRAINER_ID | int | 0 | 当前 trainer 节点的唯一 ID, 取值范围为从0开始到PADDLE_TRAINERS-1 |
### 样例代码
将下面程序代码保存为
`fluid_dist.py`
```
python
import
paddle
import
paddle.fluid
as
fluid
import
contextlib
import
numpy
import
unittest
# train reader
BATCH_SIZE
=
20
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
uci_housing
.
train
(),
buf_size
=
500
),
batch_size
=
BATCH_SIZE
)
test_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
uci_housing
.
test
(),
buf_size
=
500
),
batch_size
=
BATCH_SIZE
)
def
train_program
():
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'float32'
)
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
13
],
dtype
=
'float32'
)
y_predict
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
1
,
act
=
None
)
loss
=
fluid
.
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
return
avg_loss
def
optimizer_func
():
return
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
def
train
(
use_cuda
,
train_program
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
trainer
=
fluid
.
Trainer
(
train_func
=
train_program
,
place
=
place
,
optimizer_func
=
optimizer_func
)
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndStepEvent
):
if
event
.
step
==
10
:
test_metrics
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'x'
,
'y'
])
print
(
"step {0}, loss: {1}"
.
format
(
event
.
step
,
test_metrics
))
trainer
.
stop
()
trainer
.
train
(
reader
=
train_reader
,
num_epochs
=
100
,
event_handler
=
event_handler
,
feed_order
=
[
'x'
,
'y'
])
train
(
False
,
train_program
)
```
### 启动trainer节点和pserver节点
| 启动节点 | 启动命令 | 说明 |
| -- | -- | -- |
| ps0.paddlepaddle.com |
`PADDLE_TRAINING_ROLE=PSERVER PADDLE_CURRENT_IP=ps0.paddlepaddle.com PADDLE_PSERVER_IPS=ps0.paddlepaddle.com,ps1.paddlepaddle.com PADDLE_TRAINERS=2 PADDLE_PSERVER_PORT=6174 python fluid_dist.py`
| 启动 pserver 节点 |
| ps1.paddlepaddle.com |
`PADDLE_TRAINING_ROLE=PSERVER PADDLE_CURRENT_IP=ps1.paddlepaddle.com PADDLE_PSERVER_IPS=ps0.paddlepaddle.com,ps1.paddlepaddle.com PADDLE_TRAINERS=2 PADDLE_PSERVER_PORT=6174 python fluid_dist.py`
| 启动 pserver 节点 |
| trainer0.paddlepaddle.com |
`PADDLE_TRAINING_ROLE=TRAINER PADDLE_CURRENT_IP=ps0.paddlepaddle.com PADDLE_PSERVER_IPS=ps0.paddlepaddle.com,ps1.paddlepaddle.com PADDLE_TRAINERS=2 PADDLE_TRAINER_ID=0 PADDLE_PSERVER_PORT=6174 python fluid_dist.py`
| 启动第0号 trainer 节点 |
| trainer1.paddlepaddle.com |
`PADDLE_TRAINING_ROLE=TRAINER PADDLE_CURRENT_IP=ps0.paddlepaddle.com PADDLE_PSERVER_IPS=ps0.paddlepaddle.com,ps1.paddlepaddle.com PADDLE_TRAINERS=2 PADDLE_TRAINER_ID=1 PADDLE_PSERVER_PORT=6174 python fluid_dist.py`
| 启动第1号 trainer 节点 |
**注意**
-
需要先启动pserver节点再启动trainer节点
-
看到trainer节点输出如下日志表示训练任务执行正确
```
bash
step 10, loss:
[
258.2326202392578]
```
source/user_guides/howto/training/cluster_quick_start.rst
0 → 100644
浏览文件 @
0b20f8f6
.. _cluster_quick_start:
分布式训练快速开始
==================
准备工作
--------
在本篇文章中,我们将会在介绍如何快速在一个集群中启动一个 PaddlePaddle
的分布式训练任务,在开始之前,请按如下步骤做些准备工作:
1. 准备一个至少4个节点的集群,并且保证网络可以联通,在本文中我们使用
``*.paddlepaddle.com`` 来表示每个节点的主机名称,您可以根据集群的实际情况来修改它。
2. 在开始之前确保已经阅读过 :ref:`quick_start_install`
并且可以在集群的所有节点上可以正常运行 PaddlePaddle。
启动集群训练任务
----------------
在启动集群训练脚本时,需要在不同的节点上指定不同的环境变量,具体如下:
+-----------------+-----------------+-----------------+---------------------+
| 环境变量 | 数据类型 | 样例 | 描述 |
+=================+=================+=================+=====================+
| PADDLE_TRAINING | str | PSERVER,TRAINER | 训练节点的角色 |
| _ROLE | | | |
+-----------------+-----------------+-----------------+---------------------+
| PADDLE_PSERVER_ | str | ps0.paddlepaddl | 所有 pserver |
| IPS | | e.com,ps1.paddl | 节点的 IP |
| | | epaddle.com… | 地址或 |
| | | | hostname, |
| | | | 用“,”分隔 |
+-----------------+-----------------+-----------------+---------------------+
| PADDLE_PSERVER_ | int | 6174 | pserver |
| PORT | | | 节点监听的端口 |
+-----------------+-----------------+-----------------+---------------------+
| PADDLE_TRAINERS | int | 2 | 训练任务中 |
| | | | trainer |
| | | | 节点的数量 |
+-----------------+-----------------+-----------------+---------------------+
| PADDLE_CURRENT_ | str | ps0.paddlepaddl | 当前 pserver |
| IP | | e.com | 节点的 IP |
| | | | 地址或 hostanme |
+-----------------+-----------------+-----------------+---------------------+
| PADDLE_TRAINER_ | int | 0 | 当前 trainer |
| ID | | | 节点的唯一 ID, |
| | | | 取值范围为从0开始到 |
| | | | PADDLE_TRAINERS-1 |
+-----------------+-----------------+-----------------+---------------------+
样例代码
~~~~~~~~
将下面程序代码保存为 ``fluid_dist.py``
.. code:: python
import paddle
import paddle.fluid as fluid
import contextlib
import numpy
import unittest
# train reader
BATCH_SIZE = 20
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.train(), buf_size=500),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.test(), buf_size=500),
batch_size=BATCH_SIZE)
def train_program():
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
loss = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_loss = fluid.layers.mean(loss)
return avg_loss
def optimizer_func():
return fluid.optimizer.SGD(learning_rate=0.001)
def train(use_cuda, train_program):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
trainer = fluid.Trainer(
train_func=train_program, place=place, optimizer_func=optimizer_func)
def event_handler(event):
if isinstance(event, fluid.EndStepEvent):
if event.step == 10:
test_metrics = trainer.test(
reader=test_reader, feed_order=['x', 'y'])
print("step {0}, loss: {1}".format(event.step, test_metrics))
trainer.stop()
trainer.train(
reader=train_reader,
num_epochs=100,
event_handler=event_handler,
feed_order=['x', 'y'])
train(False, train_program)
启动trainer节点和pserver节点
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. list-table::
:header-rows: 1
* - 启动节点
- 启动命令
- 说明
* - ps0.paddlepaddle.com
- :code:`PADDLE_TRAINING_ROLE=PSERVER PADDLE_CURRENT_IP=ps0.paddlepaddle.com PADDLE_PSERVER_IPS=ps0.paddlepaddle.com,ps1.paddlepaddle.com PADDLE_TRAINERS=2 PADDLE_PSERVER_PORT=6174 python fluid_dist.py`
- 启动 pserver 节点
* - ps1.paddlepaddle.com
- :code:`PADDLE_TRAINING_ROLE=PSERVER PADDLE_CURRENT_IP=ps1.paddlepaddle.com PADDLE_PSERVER_IPS=ps0.paddlepaddle.com,ps1.paddlepaddle.com PADDLE_TRAINERS=2 PADDLE_PSERVER_PORT=6174 python fluid_dist.py`
- 启动 pserver 节点
* - trainer0.paddlepaddle.com
- :code:`PADDLE_TRAINING_ROLE=TRAINER PADDLE_CURRENT_IP=ps0.paddlepaddle.com PADDLE_PSERVER_IPS=ps0.paddlepaddle.com,ps1.paddlepaddle.com PADDLE_TRAINERS=2 PADDLE_TRAINER_ID=0 PADDLE_PSERVER_PORT=6174 python fluid_dist.py`
- 启动第0号 trainer 节点
* - trainer1.paddlepaddle.com
- :code:`PADDLE_TRAINING_ROLE=TRAINER PADDLE_CURRENT_IP=ps0.paddlepaddle.com PADDLE_PSERVER_IPS=ps0.paddlepaddle.com,ps1.paddlepaddle.com PADDLE_TRAINERS=2 PADDLE_TRAINER_ID=1 PADDLE_PSERVER_PORT=6174 python fluid_dist.py`
- 启动第1号 trainer 节点
**注意**
- 需要先启动pserver节点再启动trainer节点
- 看到trainer节点输出如下日志表示训练任务执行正确
.. code:: bash
step 10, loss: [258.2326202392578]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录