提交 04a72c00 编写于 作者: S Superjomn

add inference doc

上级 75e032b1
......@@ -5,6 +5,11 @@
服务端
######
.. toctree::
:maxdepth: 2
native_inference_engine.md
移动端
######
\ No newline at end of file
######
# Paddle 预测 API
为了更简单方便的预测部署,Fluid 提供了一套高层 API 用来隐藏底层不同的优化实现。
预测库相关代码位于https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/contrib/inference,其中发布的包括
- 头文件 `paddle_inference_api.h` 定义了所有的接口
- 库文件`libpaddle_fluid.so``libpaddle_fluid.a`
- 库文件 `libpaddle_inference_api.so``libpaddle_inference_api.a`
编译和依赖可以参考 [安装与编译C++预测库](http://www.paddlepaddle.org/docs/develop/documentation/fluid/zh/howto/inference/build_and_install_lib_cn.html)
下面是一些 API 概念的介绍
## PaddleTensor
PaddleTensor 定义了预测最基本的输入输出的数据格式,其定义是
```c++
struct PaddleTensor {
std::string name; // variable name.
std::vector<int> shape;
PaddleBuf data; // blob of data.
PaddleDType dtype;
};
```
- `name` 用于指定输入数据对应的 模型中variable 的名字 (暂时没有用,但会在后续支持任意 target 时启用)
- `shape` 表示一个 Tensor 的 shape
- `data` 数据以连续内存的方式存储在`PaddleBuf` 中,`PaddleBuf` 可以接收外面的数据或者独立`malloc`内存,详细可以参考头文件中相关定义。
- `dtype` 表示 Tensor 的数据类型
## engine
高层 API 底层有多种优化实现,我们称之为 engine,目前有三种 engine
- 原生 engine,由 paddle 原生的 forward operator 组成,可以天然支持所有paddle 训练出的模型,
- Anakin engine,封装了 [Anakin](https://github.com/PaddlePaddle/Anakin) ,在某些模型上性能不错,但只能接受自带模型格式,无法支持所有 paddle 模型,
- TensorRT mixed engine,用子图的方式支持了 [TensorRT](https://developer.nvidia.com/tensorrt) ,支持所有paddle 模型,并自动切割部分计算子图到 TensorRT 上加速(WIP)
其实现为
```c++
enum class PaddleEngineKind {
kNative = 0, // Use the native Fluid facility.
kAnakin, // Use Anakin for inference.
kAutoMixedTensorRT // Automatically mixing TensorRT with the Fluid ops.
};
```
## 预测部署过程
总体上分为以下步骤
1. 用合适的配置创建 `PaddlePredictor`
2. 创建输入用的 `PaddleTensor`,传入到 `PaddlePredictor`
3. 获取输出的 `PaddleTensor` ,将结果取出
下面完整演示一个简单的模型,部分细节代码隐去
```c++
#include "paddle_inference_api.h"
// 创建一个 config,并修改相关设置
paddle::NativeConfig config;
config.model_dir = "xxx";
config.use_gpu = false;
// 创建一个原生的 PaddlePredictor
auto predictor =
paddle::CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
// 创建输入 tensor
int64_t data[4] = {1, 2, 3, 4};
paddle::PaddleTensor tensor{.name = "",
.shape = std::vector<int>({4, 1}),
.data = PaddleBuf(data, sizeof(data)),
.dtype = PaddleDType::INT64};
// 创建输出 tensor,输出 tensor 的内存可以复用
std::vector<paddle::PaddleTensor> outputs;
// 执行预测
CHECK(predictor->Run(slots, &outputs));
// 获取 outputs ...
```
编译时,联编 `libpaddle_fluid.a/.so``libpaddle_inference_api.a/.so` 便可。
## 详细代码参考
- [inference demos](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/contrib/inference/demo)
- [复杂单线程/多线程例子](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/contrib/inference/test_paddle_inference_api_impl.cc)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册