未验证 提交 00fbe81e 编写于 作者: J Jack Zhou 提交者: GitHub

add the doc for the logic ops

add the doc for the logic ops, add the broadcasting ops
上级 2ea2003c
......@@ -5,39 +5,33 @@ logical_and
.. py:function:: paddle.logical_and(x, y, out=None, name=None)
:alias_main: paddle.logical_and
:alias: paddle.logical_and, paddle.tensor.logical_and, paddle.tensor.logic.logical_and
:old_api: paddle.fluid.layers.logical_and
该OP逐元素的对 ``x`` 和 ``y`` 进行逻辑与运算。
.. math::
Out = X \&\& Y
参数:
- **x** (Variable)- 逻辑与运算的第一个输入,是一个 Variable,数据类型只能是bool。
- **y** (Variable)- 逻辑与运算的第二个输入,是一个 Variable,数据类型只能是bool。
- **out** (Variable,可选)- 指定算子输出结果的 Variable,可以是程序中已经创建的任何Variable。默认值为None,此时将创建新的Variable来保存输出结果。
- **name** (str,可选)- 该参数供开发人员打印调试信息时使用,具体用法参见 :ref:`api_guide_Name` ,默认值为None。
.. note::
``paddle.logical_and`` 遵守broadcasting,如您想了解更多,请参见 :ref:`cn_user_guide_broadcasting` 。
返回:与 ``x`` 维度相同,数据类型相同的 Variable。
返回类型:Variable
参数:
- **x** (Tensor)- 输入的 `Tensor` ,数据类型为:bool。
- **y** (Tensor)- 输入的 `Tensor` ,数据类型为:bool。
- **out** (Tensor,可选)- 指定算子输出结果的 `Tensor` ,可以是程序中已经创建的任何Tensor。默认值为None,此时将创建新的Tensor来保存输出结果。
- **name** (str,可选)- 操作的名称(可选,默认值为None)。更多信息请参见 :ref:`api_guide_Name` 。
返回: ``Tensor`` , 维度``x`` 维度相同,存储运算后的结果。
**代码示例:**
.. code-block:: python
import paddle
import numpy as np
paddle.enable_imperative()
x_data = np.array([True, True, False, False], dtype=np.bool)
y_data = np.array([True, False, True, False], dtype=np.bool)
x = paddle.imperative.to_variable(x_data)
y = paddle.imperative.to_variable(y_data)
res = paddle.logical_and(x, y)
print(res.numpy()) # [True False False False]
import paddle
import numpy as np
paddle.disable_static()
x_data = np.array([True], dtype=np.bool)
y_data = np.array([True, False, True, False], dtype=np.bool)
x = paddle.to_tensor(x_data)
y = paddle.to_tensor(y_data)
res = paddle.logical_and(x, y)
print(res.numpy()) # [True False True False]
......@@ -5,39 +5,33 @@ logical_or
.. py:function:: paddle.logical_or(x, y, out=None, name=None)
:alias_main: paddle.logical_or
:alias: paddle.logical_or, paddle.tensor.logical_or, paddle.tensor.logic.logical_or
:old_api: paddle.fluid.layers.logical_or
该OP逐元素的对 ``X`` 和 ``Y`` 进行逻辑或运算。
.. math::
Out = X || Y
参数:
- **x** (Variable)- 逻辑或运算的第一个输入,是一个 Variable,数据类型只能是bool。
- **y** (Variable)- 逻辑或运算的第二个输入,是一个 Variable,数据类型只能是bool。
- **out** (Variable,可选)- 指定算子输出结果的 Variable,可以是程序中已经创建的任何Variable。默认值为None,此时将创建新的Variable来保存输出结果。
- **name** (str,可选)- 该参数供开发人员打印调试信息时使用,具体用法参见 :ref:`api_guide_Name` ,默认值为None。
返回:与 ``x`` 维度相同,数据类型相同的 Variable。
.. note::
``paddle.logical_or`` 遵守broadcasting,如您想了解更多,请参见 :ref:`cn_user_guide_broadcasting` 。
返回类型:Variable
参数:
- **x** (Tensor)- 输入的 `Tensor` ,数据类型为:bool。
- **y** (Tensor)- 输入的 `Tensor` ,数据类型为:bool。
- **out** (Tensor,可选)- 指定算子输出结果的 `Tensor` ,可以是程序中已经创建的任何Tensor。默认值为None,此时将创建新的Tensor来保存输出结果。
- **name** (str,可选)- 操作的名称(可选,默认值为None)。更多信息请参见 :ref:`api_guide_Name` 。
返回: ``Tensor`` , 维度``x`` 维度相同,存储运算后的结果。
**代码示例:**
.. code-block:: python
import paddle
import numpy as np
import paddle
import numpy as np
paddle.enable_imperative()
x_data = np.array([True, True, False, False], dtype=np.bool)
y_data = np.array([True, False, True, False], dtype=np.bool)
x = paddle.imperative.to_variable(x_data)
y = paddle.imperative.to_variable(y_data)
res = paddle.logical_or(x, y)
print(res.numpy()) # [True True True False]
paddle.disable_static()
x_data = np.array([True, False], dtype=np.bool).reshape(2, 1)
y_data = np.array([True, False, True, False], dtype=np.bool).reshape(2, 2)
x = paddle.to_tensor(x_data)
y = paddle.to_tensor(y_data)
res = paddle.logical_or(x, y)
print(res.numpy()) # [[ True True] [ True False]]
......@@ -5,40 +5,33 @@ logical_xor
.. py:function:: paddle.logical_xor(x, y, out=None, name=None)
:alias_main: paddle.logical_xor
:alias: paddle.logical_xor, paddle.tensor.logical_xor, paddle.tensor.logic.logical_xor
:old_api: paddle.fluid.layers.logical_xor
该OP逐元素的对 ``X`` 和 ``Y`` 进行逻辑异或运算。
.. math::
Out = (X || Y) \&\& !(X \&\& Y)
参数:
- **x** (Variable)- 逻辑异或运算的第一个输入,是一个 Variable,数据类型只能是bool。
- **y** (Variable)- 逻辑异或运算的第二个输入,是一个 Variable,数据类型只能是bool。
- **out** (Variable,可选)- 指定算子输出结果的 Variable,可以是程序中已经创建的任何Variable。默认值为None,此时将创建新的Variable来保存输出结果。
- **name** (str,可选)- 该参数供开发人员打印调试信息时使用,具体用法参见 :ref:`api_guide_Name` ,默认值为None。
.. note::
``paddle.logical_xor`` 遵守broadcasting,如您想了解更多,请参见 :ref:`cn_user_guide_broadcasting` 。
参数:
- **x** (Tensor)- 输入的 `Tensor` ,数据类型为:bool。
- **y** (Tensor)- 输入的 `Tensor` ,数据类型为:bool。
- **out** (Tensor,可选)- 指定算子输出结果的 `Tensor` ,可以是程序中已经创建的任何Tensor。默认值为None,此时将创建新的Tensor来保存输出结果。
- **name** (str,可选)- 操作的名称(可选,默认值为None)。更多信息请参见 :ref:`api_guide_Name` 。
返回:与 ``x`` 维度相同,数据类型相同的 Variable。
返回类型:Variable
返回: ``Tensor`` , 维度``x`` 维度相同,存储运算后的结果。
**代码示例:**
.. code-block:: python
import paddle
import numpy as np
import paddle
import numpy as np
paddle.enable_imperative()
x_data = np.array([True, True, False, False], dtype=np.bool)
y_data = np.array([True, False, True, False], dtype=np.bool)
x = paddle.imperative.to_variable(x_data)
y = paddle.imperative.to_variable(y_data)
res = paddle.logical_xor(x, y)
print(res.numpy()) # [False True True False]
paddle.disable_static()
x_data = np.array([True, False], dtype=np.bool).reshape([2, 1])
y_data = np.array([True, False, True, False], dtype=np.bool).reshape([2, 2])
x = paddle.to_tensor(x_data)
y = paddle.to_tensor(y_data)
res = paddle.logical_xor(x, y)
print(res.numpy()) # [[False, True], [ True, False]]
......@@ -5,39 +5,33 @@ logical_and
.. py:function:: paddle.logical_and(x, y, out=None, name=None)
:alias_main: paddle.logical_and
:alias: paddle.logical_and, paddle.tensor.logical_and, paddle.tensor.logic.logical_and
:old_api: paddle.fluid.layers.logical_and
该OP逐元素的对 ``x`` 和 ``y`` 进行逻辑与运算。
.. math::
Out = X \&\& Y
参数:
- **x** (Variable)- 逻辑与运算的第一个输入,是一个 Variable,数据类型只能是bool。
- **y** (Variable)- 逻辑与运算的第二个输入,是一个 Variable,数据类型只能是bool。
- **out** (Variable,可选)- 指定算子输出结果的 Variable,可以是程序中已经创建的任何Variable。默认值为None,此时将创建新的Variable来保存输出结果。
- **name** (str,可选)- 该参数供开发人员打印调试信息时使用,具体用法参见 :ref:`api_guide_Name` ,默认值为None。
.. note::
``paddle.logical_and`` 遵守broadcasting,如您想了解更多,请参见 :ref:`cn_user_guide_broadcasting` 。
返回:与 ``x`` 维度相同,数据类型相同的 Variable。
返回类型:Variable
参数:
- **x** (Tensor)- 输入的 `Tensor` ,数据类型为:bool。
- **y** (Tensor)- 输入的 `Tensor` ,数据类型为:bool。
- **out** (Tensor,可选)- 指定算子输出结果的 `Tensor` ,可以是程序中已经创建的任何Tensor。默认值为None,此时将创建新的Tensor来保存输出结果。
- **name** (str,可选)- 操作的名称(可选,默认值为None)。更多信息请参见 :ref:`api_guide_Name` 。
返回: ``Tensor`` , 维度``x`` 维度相同,存储运算后的结果。
**代码示例:**
.. code-block:: python
import paddle
import numpy as np
paddle.enable_imperative()
x_data = np.array([True, True, False, False], dtype=np.bool)
y_data = np.array([True, False, True, False], dtype=np.bool)
x = paddle.imperative.to_variable(x_data)
y = paddle.imperative.to_variable(y_data)
res = paddle.logical_and(x, y)
print(res.numpy()) # [True False False False]
import paddle
import numpy as np
paddle.disable_static()
x_data = np.array([True], dtype=np.bool)
y_data = np.array([True, False, True, False], dtype=np.bool)
x = paddle.to_tensor(x_data)
y = paddle.to_tensor(y_data)
res = paddle.logical_and(x, y)
print(res.numpy()) # [True False True False]
......@@ -5,39 +5,33 @@ logical_or
.. py:function:: paddle.logical_or(x, y, out=None, name=None)
:alias_main: paddle.logical_or
:alias: paddle.logical_or, paddle.tensor.logical_or, paddle.tensor.logic.logical_or
:old_api: paddle.fluid.layers.logical_or
该OP逐元素的对 ``X`` 和 ``Y`` 进行逻辑或运算。
.. math::
Out = X || Y
参数:
- **x** (Variable)- 逻辑或运算的第一个输入,是一个 Variable,数据类型只能是bool。
- **y** (Variable)- 逻辑或运算的第二个输入,是一个 Variable,数据类型只能是bool。
- **out** (Variable,可选)- 指定算子输出结果的 Variable,可以是程序中已经创建的任何Variable。默认值为None,此时将创建新的Variable来保存输出结果。
- **name** (str,可选)- 该参数供开发人员打印调试信息时使用,具体用法参见 :ref:`api_guide_Name` ,默认值为None。
返回:与 ``x`` 维度相同,数据类型相同的 Variable。
.. note::
``paddle.logical_or`` 遵守broadcasting,如您想了解更多,请参见 :ref:`cn_user_guide_broadcasting` 。
返回类型:Variable
参数:
- **x** (Tensor)- 输入的 `Tensor` ,数据类型为:bool。
- **y** (Tensor)- 输入的 `Tensor` ,数据类型为:bool。
- **out** (Tensor,可选)- 指定算子输出结果的 `Tensor` ,可以是程序中已经创建的任何Tensor。默认值为None,此时将创建新的Tensor来保存输出结果。
- **name** (str,可选)- 操作的名称(可选,默认值为None)。更多信息请参见 :ref:`api_guide_Name` 。
返回: ``Tensor`` , 维度``x`` 维度相同,存储运算后的结果。
**代码示例:**
.. code-block:: python
import paddle
import numpy as np
import paddle
import numpy as np
paddle.enable_imperative()
x_data = np.array([True, True, False, False], dtype=np.bool)
y_data = np.array([True, False, True, False], dtype=np.bool)
x = paddle.imperative.to_variable(x_data)
y = paddle.imperative.to_variable(y_data)
res = paddle.logical_or(x, y)
print(res.numpy()) # [True True True False]
paddle.disable_static()
x_data = np.array([True, False], dtype=np.bool).reshape(2, 1)
y_data = np.array([True, False, True, False], dtype=np.bool).reshape(2, 2)
x = paddle.to_tensor(x_data)
y = paddle.to_tensor(y_data)
res = paddle.logical_or(x, y)
print(res.numpy()) # [[ True True] [ True False]]
......@@ -5,40 +5,33 @@ logical_xor
.. py:function:: paddle.logical_xor(x, y, out=None, name=None)
:alias_main: paddle.logical_xor
:alias: paddle.logical_xor, paddle.tensor.logical_xor, paddle.tensor.logic.logical_xor
:old_api: paddle.fluid.layers.logical_xor
该OP逐元素的对 ``X`` 和 ``Y`` 进行逻辑异或运算。
.. math::
Out = (X || Y) \&\& !(X \&\& Y)
参数:
- **x** (Variable)- 逻辑异或运算的第一个输入,是一个 Variable,数据类型只能是bool。
- **y** (Variable)- 逻辑异或运算的第二个输入,是一个 Variable,数据类型只能是bool。
- **out** (Variable,可选)- 指定算子输出结果的 Variable,可以是程序中已经创建的任何Variable。默认值为None,此时将创建新的Variable来保存输出结果。
- **name** (str,可选)- 该参数供开发人员打印调试信息时使用,具体用法参见 :ref:`api_guide_Name` ,默认值为None。
.. note::
``paddle.logical_xor`` 遵守broadcasting,如您想了解更多,请参见 :ref:`cn_user_guide_broadcasting` 。
参数:
- **x** (Tensor)- 输入的 `Tensor` ,数据类型为:bool。
- **y** (Tensor)- 输入的 `Tensor` ,数据类型为:bool。
- **out** (Tensor,可选)- 指定算子输出结果的 `Tensor` ,可以是程序中已经创建的任何Tensor。默认值为None,此时将创建新的Tensor来保存输出结果。
- **name** (str,可选)- 操作的名称(可选,默认值为None)。更多信息请参见 :ref:`api_guide_Name` 。
返回:与 ``x`` 维度相同,数据类型相同的 Variable。
返回类型:Variable
返回: ``Tensor`` , 维度``x`` 维度相同,存储运算后的结果。
**代码示例:**
.. code-block:: python
import paddle
import numpy as np
import paddle
import numpy as np
paddle.enable_imperative()
x_data = np.array([True, True, False, False], dtype=np.bool)
y_data = np.array([True, False, True, False], dtype=np.bool)
x = paddle.imperative.to_variable(x_data)
y = paddle.imperative.to_variable(y_data)
res = paddle.logical_xor(x, y)
print(res.numpy()) # [False True True False]
paddle.disable_static()
x_data = np.array([True, False], dtype=np.bool).reshape([2, 1])
y_data = np.array([True, False, True, False], dtype=np.bool).reshape([2, 2])
x = paddle.to_tensor(x_data)
y = paddle.to_tensor(y_data)
res = paddle.logical_xor(x, y)
print(res.numpy()) # [[False, True], [ True, False]]
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册