visualdl_usage.md 24.8 KB
Newer Older
1
# VisualDL 使用指南
2

3
### 概述
4

5
VisualDL 是一个面向深度学习任务设计的可视化工具。VisualDL 利用了丰富的图表来展示数据,用户可以更直观、清晰地查看数据的特征与变化趋势,有助于分析数据、及时发现错误,进而改进神经网络模型的设计。
6

Y
YixinKristy 已提交
7
目前,VisualDL 支持 scalar, image, audio, graph, histogram, pr curve, high dimensional 七个组件,项目正处于高速迭代中,敬请期待新组件的加入。
8

Y
YixinKristy 已提交
9 10 11 12 13 14 15 16 17
|                      组件名称                       |  展示图表  | 作用                                                         |
| :-------------------------------------------------: | :--------: | :----------------------------------------------------------- |
|            [ Scalar](#Scalar--标量组件)             |   折线图   | 动态展示损失函数值、准确率等标量数据                         |
|           [Image](#Image--图片可视化组件)           | 图片可视化 | 显示图片,可显示输入图片和处理后的结果,便于查看中间过程的变化 |
|            [Audio](#Audio--音频播放组件)            |  音频播放  | 播放训练过程中的音频数据,监控语音识别与合成等任务的训练过程 |
|            [Graph](#Graph--网络结构组件)            |  网络结构  | 展示网络结构、节点属性及数据流向,辅助学习、优化网络结构     |
|         [Histogram](#Histogram--直方图组件)         |   直方图   | 展示训练过程中权重、梯度等张量的分布                         |
|          [PR Curve](#PR-Curve--PR曲线组件)          |   折线图   | 权衡精度与召回率之间的平衡关系,便于选择最佳阈值             |
| [High Dimensional](#High-Dimensional--数据降维组件) |  数据降维  | 将高维数据映射到 2D/3D 空间来可视化嵌入,便于观察不同数据的相关性 |
18

19
## Scalar -- 折线图组件
20

21
### 介绍
22

23
Scalar 组件的输入数据类型为标量,该组件的作用是将训练参数以折线图形式呈现。将损失函数值、准确率等标量数据作为参数传入 scalar 组件,即可画出折线图,便于观察变化趋势。
24

25
### 记录接口
26

27
Scalar 组件的记录接口如下:
28

29
```python
30
add_scalar(tag, value, step, walltime=None)
31
```
Y
YixinKristy 已提交
32

33
接口参数说明如下:
Y
YixinKristy 已提交
34 35 36 37 38 39 40

| 参数     | 格式   | 含义                                        |
| -------- | ------ | ------------------------------------------- |
| tag      | string | 记录指标的标志,如`train/loss`,不能含有`%` |
| value    | float  | 要记录的数据值                              |
| step     | int    | 记录的步数                                  |
| walltime | int    | 记录数据的时间戳,默认为当前时间戳          |
41

42
### Demo
Y
YixinKristy 已提交
43 44 45 46 47

- 基础使用

下面展示了使用 Scalar 组件记录数据的示例,代码文件请见[Scalar组件](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/scalar_test.py)

48 49 50
```python
from visualdl import LogWriter

51 52 53 54 55 56 57 58 59 60
if __name__ == '__main__':
    value = [i/1000.0 for i in range(1000)]
    # 初始化一个记录器
    with LogWriter(logdir="./log/scalar_test/train") as writer:
        for step in range(1000):
            # 向记录器添加一个tag为`acc`的数据
            writer.add_scalar(tag="acc", step=step, value=value[step])
            # 向记录器添加一个tag为`loss`的数据
            writer.add_scalar(tag="loss", step=step, value=1/(value[step] + 1))
```
Y
YixinKristy 已提交
61

62
运行上述程序后,在命令行执行
Y
YixinKristy 已提交
63

64
```shell
65
visualdl --logdir ./log --port 8080
66
```
67

68
接着在浏览器打开`http://127.0.0.1:8080`,即可查看以下折线图。
69 70

<p align="center">
Y
YixinKristy 已提交
71
  <img src="https://user-images.githubusercontent.com/48054808/82397559-478c6d00-9a83-11ea-80db-a0844dcaca35.png" width="100%"/>
72
</p>
73

74

75

Y
YixinKristy 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
- 多组实验对比

下面展示了使用Scalar组件实现多组实验对比

多组实验对比的实现分为两步:

1. 创建子日志文件储存每组实验的参数数据
2. 将数据写入scalar组件时,**使用相同的tag**,即可实现对比**不同实验****同一类型参数**

```python
from visualdl import LogWriter

if __name__ == '__main__':
    value = [i/1000.0 for i in range(1000)]
    # 步骤一:创建父文件夹:log与子文件夹:scalar_test
    with LogWriter(logdir="./log/scalar_test") as writer:
        for step in range(1000):
            # 步骤二:向记录器添加一个tag为`train/acc`的数据
            writer.add_scalar(tag="train/acc", step=step, value=value[step])
            # 步骤二:向记录器添加一个tag为`train/loss`的数据
            writer.add_scalar(tag="train/loss", step=step, value=1/(value[step] + 1))
    # 步骤一:创建第二个子文件夹scalar_test2  
    value = [i/500.0 for i in range(1000)]
    with LogWriter(logdir="./log/scalar_test2") as writer:
        for step in range(1000):
            # 步骤二:在同样名为`train/acc`下添加scalar_test2的accuracy的数据
            writer.add_scalar(tag="train/acc", step=step, value=value[step])
            # 步骤二:在同样名为`train/loss`下添加scalar_test2的loss的数据
            writer.add_scalar(tag="train/loss", step=step, value=1/(value[step] + 1))
```

运行上述程序后,在命令行执行

```shell
visualdl --logdir ./log --port 8080
```

接着在浏览器打开`http://127.0.0.1:8080`,即可查看以下折线图,对比「scalar_test」和「scalar_test2」的Accuracy和Loss。

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/84644158-5efb3080-af31-11ea-8e64-bbe4078425f4.png" width="100%"/>
</p>


*多组实验对比的应用案例可参考AI Studio项目:[VisualDL 2.0--眼疾识别训练可视化](https://aistudio.baidu.com/aistudio/projectdetail/502834)


123
### 功能操作说明
124

125
* 支持数据卡片「最大化」、「还原」、「坐标系转化」(y轴对数坐标)、「下载」折线图
126

127 128 129
<p align="center">
  <img src="http://visualdl.bj.bcebos.com/images/scalar-icon.png" width="55%"/>
</p>
130 131


132

Y
YixinKristy 已提交
133 134


135
* 数据点Hover展示详细信息
136

137 138 139
<p align="center">
  <img src="http://visualdl.bj.bcebos.com/images/scalar-tooltip.png" width="60%"/>
</p>
140 141 142



Y
YixinKristy 已提交
143 144


145
* 可搜索卡片标签,展示目标图像
146

147 148 149
<p align="center">
  <img src="http://visualdl.bj.bcebos.com/images/scalar-searchlabel.png" width="90%"/>
</p>
150

151

152

Y
YixinKristy 已提交
153 154


155
* 可搜索打点数据标签,展示特定数据
156 157

<p align="center">
158
  <img src="http://visualdl.bj.bcebos.com/images/scalar-searchstream.png" width="40%"/>
159
</p>
160

161

Y
YixinKristy 已提交
162 163


164
* X轴有三种衡量尺度
165

166 167 168
1. Step:迭代次数
2. Walltime:训练绝对时间
3. Relative:训练时长
169

170 171 172
<p align="center">
  <img src="http://visualdl.bj.bcebos.com/images/x-axis.png" width="40%"/>
</p>
Y
YixinKristy 已提交
173 174


175
* 可调整曲线平滑度,以便更好的展现参数整体的变化趋势
176

177 178 179
<p align="center">
  <img src="http://visualdl.bj.bcebos.com/images/scalar-smooth.png" width="37%"/>
</p>
180

181

Y
YixinKristy 已提交
182 183


184
## Image -- 图片可视化组件
185

186
### 介绍
187

188
Image 组件用于显示图片数据随训练的变化。在模型训练过程中,将图片数据传入 Image 组件,就可在 VisualDL 的前端网页查看相应图片。
189

190
### 记录接口
191

192
Image 组件的记录接口如下:
193 194

```python
195
add_image(tag, img, step, walltime=None)
196
```
Y
YixinKristy 已提交
197

198
接口参数说明如下:
Y
YixinKristy 已提交
199 200 201 202 203 204 205

| 参数     | 格式          | 含义                                        |
| -------- | ------------- | ------------------------------------------- |
| tag      | string        | 记录指标的标志,如`train/loss`,不能含有`%` |
| img      | numpy.ndarray | 以ndarray格式表示的图片                     |
| step     | int           | 记录的步数                                  |
| walltime | int           | 记录数据的时间戳,默认为当前时间戳          |
206

207
### Demo
Y
YixinKristy 已提交
208 209 210

下面展示了使用 Image 组件记录数据的示例,代码文件请见[Image组件](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/image_test.py)

211 212 213
```python
import numpy as np
from PIL import Image
214
from visualdl import LogWriter
215 216 217


def random_crop(img):
218 219
    """获取图片的随机 100x100 分片
    """
220 221 222 223
    img = Image.open(img)
    w, h = img.size
    random_w = np.random.randint(0, w - 100)
    random_h = np.random.randint(0, h - 100)
224 225
    r = img.crop((random_w, random_h, random_w + 100, random_h + 100))
    return np.asarray(r)
226

227

228 229 230 231 232
if __name__ == '__main__':
    # 初始化一个记录器
    with LogWriter(logdir="./log/image_test/train") as writer:
        for step in range(6):
            # 添加一个图片数据
Y
YixinKristy 已提交
233
            writer.add_image(tag="eye",
234 235
                             img=random_crop("../../docs/images/eye.jpg"),
                             step=step)
236
```
Y
YixinKristy 已提交
237

238
运行上述程序后,在命令行执行
Y
YixinKristy 已提交
239

240
```shell
241
visualdl --logdir ./log --port 8080
242 243
```

244
在浏览器输入`http://127.0.0.1:8080`,即可查看图片数据。
245 246

<p align="center">
Y
YixinKristy 已提交
247
  <img src="http://visualdl.bj.bcebos.com/images/image-static.png" width="100%"/>
248
</p>
249 250


Y
YixinKristy 已提交
251 252


253
### 功能操作说明
254

255
可搜索图片标签显示对应图片数据
256

257 258 259
<p align="center">
  <img src="http://visualdl.bj.bcebos.com/images/image-search.png" width="90%"/>
</p>
260

261

Y
YixinKristy 已提交
262 263


264
支持滑动Step/迭代次数查看不同迭代次数下的图片数据
265 266

<p align="center">
267
  <img src="http://visualdl.bj.bcebos.com/images/image-eye.gif" width="60%"/>
268
</p>
269

270

Y
YixinKristy 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706


## Audio--音频播放组件

### 介绍

Audio组件实时查看训练过程中的音频数据,监控语音识别与合成等任务的训练过程。

### 记录接口

Audio 组件的记录接口如下:

```python
add_audio(tag, audio_array, step, sample_rate)
```

接口参数说明如下:

| 参数        | 格式          | 含义                                       |
| ----------- | ------------- | ------------------------------------------ |
| tag         | string        | 记录指标的标志,如`audio_tag`,不能含有`%` |
| audio_arry  | numpy.ndarray | 以ndarray格式表示的音频                    |
| step        | int           | 记录的步数                                 |
| sample_rate | int           | 采样率,**注意正确填写对应音频的原采样率** |

### Demo

下面展示了使用 Audio 组件记录数据的示例,代码文件请见[Audio组件](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/audio_test.py)

```python
from visualdl import LogWriter
import numpy as np
import wave


def read_audio_data(audio_path):
    """
    Get audio data.
    """
    CHUNK = 4096
    f = wave.open(audio_path, "rb")
    wavdata = []
    chunk = f.readframes(CHUNK)
    while chunk:
        data = np.frombuffer(chunk, dtype='uint8')
        wavdata.extend(data)
        chunk = f.readframes(CHUNK)
    # 8k sample rate, 16bit frame, 1 channel
    shape = [8000, 2, 1]
    return shape, wavdata


if __name__ == '__main__':
    with LogWriter(logdir="./log") as writer:
        audio_shape, audio_data = read_audio_data("./testing.wav")
        audio_data = np.array(audio_data)
        writer.add_audio(tag="audio_tag",
                         audio_array=audio_data,
                         step=0,
                         sample_rate=8000)
```

运行上述程序后,在命令行执行

```shell
visualdl --logdir ./log --port 8080
```

在浏览器输入`http://127.0.0.1:8080`,即可查看音频数据。

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/87659138-b4746880-c78f-11ea-965b-c33804e7c296.png" width="100%"/>
</p>



### 功能操作说明

- 可搜索音频标签显示对应音频数据

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/87661431-29956d00-c793-11ea-833b-172d8fc1b221.png" width="100%"/>
</p>



- 支持滑动Step/迭代次数试听不同迭代次数下的音频数据

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/87661089-a07e3600-c792-11ea-8740-cbe99a64d830.png" width="60%"/>
</p>



- 支持播放/暂停音频数据

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/87661130-b3910600-c792-11ea-9f9f-2ae66132e9de.png" width="60%"/>
</p>



- 支持音量调节

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/87661497-49c52c00-c793-11ea-9eeb-471543cd2a0b.png" width="60%"/>
</p>



- 支持音频下载

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/87661166-c277b880-c792-11ea-8ad7-5c60bb08379b.png" width="60%"/>
</p>




## Graph--网络结构组件

### 介绍

Graph组件一键可视化模型的网络结构。用于查看模型属性、节点信息、节点输入输出等,并进行节点搜索,协助开发者们快速分析模型结构与了解数据流向。

### Demo

共有两种启动方式:

- 前端模型文件拖拽上传:

  - 如只需使用Graph组件,则无需添加任何参数,在命令行执行`visualdl`后即可启动面板进行上传。
  - 如果同时需使用其他功能,在命令行指定日志文件路径(以`./log`为例)即可启动面板进行上传:

  ```shell
  visualdl --logdir ./log --port 8080
  ```

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/84487396-44c31780-acd1-11ea-831a-1632e636613d.png" width="80%"/>
</p>



- 后端启动Graph:

  - 在命令行加入参数`--model`并指定**模型文件**路径(非文件夹路径),即可启动并查看网络结构可视化:

  ```shell
  visualdl --model ./log/model --port 8080
  ```

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/84490149-51e20580-acd5-11ea-9663-1f156892c0e0.png" width="100%"/>
</p>



### 功能操作说明

- 一键上传模型
  - 支持模型格式:PaddlePaddle、ONNX、Keras、Core ML、Caffe、Caffe2、Darknet、MXNet、ncnn、TensorFlow Lite
  - 实验性支持模型格式:TorchScript、PyTorch、Torch、 ArmNN、BigDL、Chainer、CNTK、Deeplearning4j、MediaPipe、ML.NET、MNN、OpenVINO、Scikit-learn、Tengine、TensorFlow.js、TensorFlow

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/84487396-44c31780-acd1-11ea-831a-1632e636613d.png" width="80%"/>
</p>



- 支持上下左右任意拖拽模型、放大和缩小模型

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/89163601-6ab9b980-d5a8-11ea-9c6d-2dc5eaed0d41.gif" width="100%"/>
</p>



- 搜索定位到对应节点

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/84487694-b9965180-acd1-11ea-8214-34f3febc1828.png" width="30%"/>
</p>



- 点击查看模型属性

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/84487751-cadf5e00-acd1-11ea-9ce2-4fdfeeea9c5a.png" width="30%"/>
</p>



<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/84487759-d03ca880-acd1-11ea-9294-520ef7f9e0b1.png" width="30%"/>
</p>



- 支持选择模型展示的信息

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/84487829-ee0a0d80-acd1-11ea-8563-6682a15483d9.png" width="23%"/>
</p>



- 支持以PNG、SVG格式导出模型结构图

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/84487884-ff531a00-acd1-11ea-8b12-5221db78683e.png" width="30%"/>
</p>



- 点击节点即可展示对应属性信息

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/84487941-13971700-acd2-11ea-937d-42fb524b9ee1.png" width="30%"/>
</p>



- 支持一键更换模型

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/84487998-27db1400-acd2-11ea-83d7-5d75832ef41d.png" width="25%"/>
</p>



## Histogram--直方图组件

### 介绍

Histogram组件以直方图形式展示Tensor(weight、bias、gradient等)数据在训练过程中的变化趋势。深入了解模型各层效果,帮助开发者精准调整模型结构。

### 记录接口

Histogram 组件的记录接口如下:

```python
add_histogram(tag, values, step, walltime=None, buckets=10)
```

接口参数说明如下:

| 参数     | 格式                  | 含义                                        |
| -------- | --------------------- | ------------------------------------------- |
| tag      | string                | 记录指标的标志,如`train/loss`,不能含有`%` |
| values   | numpy.ndarray or list | 以ndarray或list格式表示的数据               |
| step     | int                   | 记录的步数                                  |
| walltime | int                   | 记录数据的时间戳,默认为当前时间戳          |
| buckets  | int                   | 生成直方图的分段数,默认为10                |

### Demo

下面展示了使用 Histogram组件记录数据的示例,代码文件请见[Histogram组件](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/histogram_test.py)

```python
from visualdl import LogWriter
import numpy as np


if __name__ == '__main__':
    values = np.arange(0, 1000)
    with LogWriter(logdir="./log/histogram_test/train") as writer:
        for index in range(1, 101):
            interval_start = 1 + 2 * index / 100.0
            interval_end = 6 - 2 * index / 100.0
            data = np.random.uniform(interval_start, interval_end, size=(10000))
            writer.add_histogram(tag='default tag',
                                 values=data,
                                 step=index,
                                 buckets=10)
```

运行上述程序后,在命令行执行

```shell
visualdl --logdir ./log --port 8080
```

在浏览器输入`http://127.0.0.1:8080`,即可查看训练参数直方图。

### 功能操作说明

- 支持数据卡片「最大化」、直方图「下载」

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86535351-42d82700-bf12-11ea-89f0-171280e7c526.png" width="60%"/>
  </p>

- 可选择Offset或Overlay模式

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86535413-c134c900-bf12-11ea-9ad6-f0ad8eafa76f.png" width="30%"/>
  </p>


  - Offset模式

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86536435-2b9d3780-bf1a-11ea-9981-92f837d22ae5.png" width="60%"/>
  </p>



  - Overlay模式

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86536458-5ab3a900-bf1a-11ea-985e-05f06c1b762b.png" width="60%"/>
  </p>


- 数据点Hover展示参数值、训练步数、频次

  - 在第240次训练步数时,权重为-0.0031,且出现的频次是2734次

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86536482-80d94900-bf1a-11ea-9e12-5bea9f382b34.png" width="60%"/>
  </p>

- 可搜索卡片标签,展示目标直方图

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86536503-baaa4f80-bf1a-11ea-80ab-cd988617d018.png" width="30%"/>
  </p>

- 可搜索打点数据标签,展示特定数据流

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86536639-b894c080-bf1b-11ea-9ee5-cf815dd4bbd7.png" width="30%"/>
  </p>

## PR Curve--PR曲线组件

### 介绍

PR Curve以折线图形式呈现精度与召回率的权衡分析,清晰直观了解模型训练效果,便于分析模型是否达到理想标准。

### 记录接口

PR Curve组件的记录接口如下:

```python
add_pr_curve(tag, labels, predictions, step=None, num_thresholds=10)
```

接口参数说明如下:

| 参数           | 格式                  | 含义                                        |
| -------------- | --------------------- | ------------------------------------------- |
| tag            | string                | 记录指标的标志,如`train/loss`,不能含有`%` |
| labels         | numpy.ndarray or list | 以ndarray或list格式表示的实际类别           |
| predictions    | numpy.ndarray or list | 以ndarray或list格式表示的预测类别           |
| step           | int                   | 记录的步数                                  |
| num_thresholds | int                   | 阈值设置的个数,默认为10,最大值为127       |

### Demo

下面展示了使用 PR Curve 组件记录数据的示例,代码文件请见[PR Curve组件](#https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/pr_curve_test.py)

```python
from visualdl import LogWriter
import numpy as np

with LogWriter("./log/pr_curve_test/train") as writer:
    for step in range(3):
        labels = np.random.randint(2, size=100)
        predictions = np.random.rand(100)
        writer.add_pr_curve(tag='pr_curve',
                            labels=labels,
                            predictions=predictions,
                            step=step,
                            num_thresholds=5)
```

运行上述程序后,在命令行执行

```shell
visualdl --logdir ./log --port 8080
```

接着在浏览器打开`http://127.0.0.1:8080`,即可查看PR Curve

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/86738774-ee46c000-c067-11ea-90d2-a98aac445cca.png" width="100%"/>
</p>



### 功能操作说明

- 支持数据卡片「最大化」,「还原」、「下载」PR曲线

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86740067-f18e7b80-c068-11ea-96bf-52cb7da1f799.png" width="60%"/>
  </p>

- 数据点Hover展示详细信息:阈值对应的TP、TN、FP、FN

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86740477-43370600-c069-11ea-93f0-f4d05445fbab.png" width="70%"/>
  </p>

- 可搜索卡片标签,展示目标图表

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86740670-66fa4c00-c069-11ea-9ee3-0a22e2d0dbec.png" width="50%"/>
  </p>

- 可搜索打点数据标签,展示特定数据

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86740817-809b9380-c069-11ea-9453-6531e3ff5f43.png" width="50%"/>
  </p>


- 支持查看不同训练步数下的PR曲线

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86741057-b04a9b80-c069-11ea-9fef-2dcc16f9cd46.png" width="50%"/>
  </p>

- X轴-时间显示类型有三种衡量尺度

  - Step:迭代次数
  - Walltime:训练绝对时间
  - Relative:训练时长

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86741304-db34ef80-c069-11ea-86eb-787b49ed3705.png" width="50%"/>
  </p>

707
## High Dimensional -- 数据降维组件
708

709
### 介绍
710

711
High Dimensional 组件将高维数据进行降维展示,用于深入分析高维数据间的关系。目前支持以下两种降维算法:
712

713 714
 - PCA : Principle Component Analysis 主成分分析
 - t-SNE : t-distributed stochastic neighbor embedding t-分布式随机领域嵌入
715

716
### 记录接口
717

718
High Dimensional 组件的记录接口如下:
719

720
```python
721
add_embeddings(tag, labels, hot_vectors, walltime=None)
722
```
Y
YixinKristy 已提交
723

724
接口参数说明如下:
Y
YixinKristy 已提交
725 726 727 728 729 730 731

| 参数        | 格式                | 含义                                                 |
| ----------- | ------------------- | ---------------------------------------------------- |
| tag         | string              | 记录指标的标志,如`default`,不能含有`%`             |
| labels      | numpy.array 或 list | 一维数组表示的标签,每个元素是一个string类型的字符串 |
| hot_vectors | numpy.array or list | 与labels一一对应,每个元素可以看作是某个标签的特征   |
| walltime    | int                 | 记录数据的时间戳,默认为当前时间戳                   |
732

733
### Demo
Y
YixinKristy 已提交
734 735 736

下面展示了使用 High Dimensional 组件记录数据的示例,代码文件请见[High Dimensional组件](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/high_dimensional_test.py)

737 738 739
```python
from visualdl import LogWriter

740

741 742 743 744 745 746 747
if __name__ == '__main__':
    hot_vectors = [
        [1.3561076367500755, 1.3116267195134017, 1.6785401875616097],
        [1.1039614644440658, 1.8891609992484688, 1.32030488587171],
        [1.9924524852447711, 1.9358920727142739, 1.2124401279391606],
        [1.4129542689796446, 1.7372166387197474, 1.7317806077076527],
        [1.3913371800587777, 1.4684674577930312, 1.5214136352476377]]
748

749 750 751 752 753 754 755
    labels = ["label_1", "label_2", "label_3", "label_4", "label_5"]
    # 初始化一个记录器
    with LogWriter(logdir="./log/high_dimensional_test/train") as writer:
        # 将一组labels和对应的hot_vectors传入记录器进行记录
        writer.add_embeddings(tag='default',
                              labels=labels,
                              hot_vectors=hot_vectors)
756
```
Y
YixinKristy 已提交
757

758
运行上述程序后,在命令行执行
Y
YixinKristy 已提交
759

760
```shell
761
visualdl --logdir ./log --port 8080
762 763
```

764
接着在浏览器打开`http://127.0.0.1:8080`,即可查看降维后的可视化数据。
765 766

<p align="center">
Y
YixinKristy 已提交
767
  <img src="http://visualdl.bj.bcebos.com/images/dynamic_high_dimensional.gif" width="100%"/>
768
</p>
Y
YixinKristy 已提交
769 770 771 772 773 774





#