DataLoader_cn.rst 19.0 KB
Newer Older
Z
Zeng Jinle 已提交
1 2 3 4 5
.. _cn_api_fluid_io_DataLoader:

DataLoader
-------------------------------

D
dengkaipeng 已提交
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
.. py:class:: paddle.fluid.io.DataLoader(dataset, feed_list=None, places=None, return_list=False, batch_sampler=None, batch_size=1, shuffle=False, drop_last=False, collate_fn=None, num_workers=0, use_buffer_reader=True, use_shared_memory=False, timeout=0, worker_init_fn=None)

DataLoader返回一个迭代器,该迭代器根据 ``batch_sampler`` 给定的顺序迭代一次给定的 ``dataset``

DataLoader支持单进程和多进程的数据加载方式,当 ``num_workers`` 大于0时,将使用多进程方式异步加载数据。

DataLoader当前仅支持 ``map-style`` 的数据集(可通过下标索引样本), ``map-style`` 的数据集请参考 ``fluid.io.Dataset`` 。

``batch_sampler`` 请参考 ``fluid.io.BatchSampler``

参数:
    - **dataset** (Dataset) - DataLoader从此参数给定数据集中加载数据,此参数必须是 ``fluid.io.Dataset`` 的一个子类实例。
    - **feed_list** (list(Variable)|tuple(Variable)) - feed变量列表,由 ``fluid.layers.data()`` 创建。当 ``return_list`` 为False时,此参数必须设置。默认值为None。
    - **places** (list(Place)|tuple(Place)) - 数据需要放置到的Place列表。在静态图和动态图模式中,此参数均必须设置。在动态图模式中,此参数列表长度必须是1。默认值为None。
    - **return_list** (bool) - 每个设备上的数据是否以list形式返回。若return_list = False,每个设备上的返回数据均是str -> LoDTensor的映射表,其中映射表的key是每个输入变量的名称。若return_list = True,则每个设备上的返回数据均是list(LoDTensor)。在动态图模式下,此参数必须为True。默认值为False。
    - **batch_sampler** (BatchSampler) - ``fluid.io.BatchSampler`` 或其子类的实例,DataLoader通过 ``batch_sampler`` 产生的mini-batch索引列表来 ``dataset`` 中索引样本并组成mini-batch。默认值为None。
    - **batch_size** (int) - 每mini-batch中样本个数,为 ``batch_sampler`` 的替代参数,若 ``batch_sampler`` 未设置,会根据 ``batch_size`` ``shuffle`` ``drop_last`` 创建一个 ``fluid.io.BatchSampler`` 。默认值为1。
    - **shuffle** (bool) - 生成mini-batch索引列表时是否对索引打乱顺序,为 ``batch_sampler`` 的替代参数,若 ``batch_sampler`` 未设置,会根据 ``batch_size`` ``shuffle`` ``drop_last`` 创建一个 ``fluid.io.BatchSampler`` 。默认值为False。
D
dengkaipeng 已提交
24
    - **drop_last** (bool) - 是否丢弃因数据集样本数不能被 ``batch_size`` 整除而产生的最后一个不完整的mini-batch,为 ``batch_sampler`` 的替代参数,若 ``batch_sampler`` 未设置,会根据 ``batch_size`` ``shuffle`` ``drop_last`` 创建一个 ``fluid.io.BatchSampler`` 。默认值为False。
D
dengkaipeng 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    - **collate_fn** (callable) - 通过此参数指定如果将样本列表组合为mini-batch数据,当 ``collate_fn`` 为None时,默认为将样本个字段在第0维上堆叠(同 ``np.stack(..., axis=0)`` )为mini-batch的数据。默认值为None。
    - **num_workers** (int) - 用于加载数据的子进程个数,若为0即为不开启子进程,在主进程中进行数据加载。默认值为0。
    - **use_buffer_reader** (bool) - 是否使用缓存读取器 。若 ``use_buffer_reader`` 为True,DataLoader会异步地预读取下一个mini-batch的数据,可加速数据读取过程,但同时会占用少量的CPU/GPU存储,即一个batch输入数据的存储空间。默认值为True。
    - **use_shared_memory** (bool) - 是否使用共享内存来提升子进程将数据放入进程间队列的速度,该参数尽在多进程模式下有效(即 ``num_workers > 0`` ),请确认机器上有足够的共享内存空间(如Linux系统下 ``/dev/shm/`` 目录空间大小)再设置此参数。默认为False。
    - **timeout** (int) - 从子进程输出队列获取mini-batch数据的超时时间。默认值为0。
    - **worker_init_fn** (callable) - 子进程初始化函数,此函数会被子进程初始化时被调用,并传递 ``worker id`` 作为参数。默认值为None。

返回:迭代 ``dataset`` 数据的迭代器

返回类型: DataLoader

**代码示例**

.. code-block:: python

    import numpy as np
    import paddle.fluid as fluid
    from paddle.fluid.io import Dataset, MnistDataset, BatchSampler, DataLoader

    BATCH_NUM = 20
    BATCH_SIZE = 16
    EPOCH_NUM = 4

    IMAGE_SIZE = 784
    CLASS_NUM = 10

    USE_GPU = True # whether use GPU to run model

    # define a random dataset
    class RandomDataset(Dataset):
        def __init__(self, num_samples):
            self.num_samples = num_samples

        def __getitem__(self, idx):
            image = np.random.random([IMAGE_SIZE]).astype('float32')
            label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
            return image, label

        def __len__(self):
            return self.num_samples

    # get places
    places = fluid.cuda_places() if USE_GPU else fluid.cpu_places()

    # -------------------- static graph ---------------------

    def simple_net(image, label):
        fc_tmp = fluid.layers.fc(image, size=CLASS_NUM, act='softmax')
        cross_entropy = fluid.layers.softmax_with_cross_entropy(image, label)
        loss = fluid.layers.reduce_mean(cross_entropy)
        sgd = fluid.optimizer.SGD(learning_rate=1e-3)
        sgd.minimize(loss)
        return loss

    image = fluid.data(name='image', shape=[None, IMAGE_SIZE], dtype='float32')
    label = fluid.data(name='label', shape=[None, 1], dtype='int64')

    loss = simple_net(image, label)

    exe = fluid.Executor(places[0])
    exe.run(fluid.default_startup_program())

    prog = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(loss_name=loss.name)

    dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)

    loader = DataLoader(dataset,
                        feed_list=[image, label],
                        places=places,
                        batch_size=BATCH_SIZE, 
                        shuffle=True,
                        drop_last=True,
                        num_workers=2)

    for e in range(EPOCH_NUM):
        for i, data in enumerate(loader()):
            l = exe.run(prog, feed=data, fetch_list=[loss], return_numpy=True)
            print("Epoch {} batch {}: loss = {}".format(e, i, l[0][0]))

    # -------------------------------------------------------
        
    # -------------------- dynamic graph --------------------

    class SimpleNet(fluid.dygraph.Layer):
        def __init__(self):
            super(SimpleNet, self).__init__()
            self.fc = fluid.dygraph.nn.Linear(IMAGE_SIZE, CLASS_NUM, act='softmax')

        def forward(self, image, label=None):
            return self.fc(image)

    with fluid.dygraph.guard(places[0]):
        simple_net = SimpleNet()
        opt = fluid.optimizer.SGD(learning_rate=1e-3,
                                  parameter_list=simple_net.parameters())

        loader = DataLoader(dataset,
                            places=places[0],
                            batch_size=BATCH_SIZE,
                            shuffle=True,
                            drop_last=True,
                            num_workers=2)

        for e in range(EPOCH_NUM):
            for i, (image, label) in enumerate(loader()):
                out = simple_net(image)
                loss = fluid.layers.cross_entropy(out, label)
                avg_loss = fluid.layers.reduce_mean(loss)
                avg_loss.backward()
                opt.minimize(avg_loss)
                simple_net.clear_gradients()
                print("Epoch {} batch {}: loss = {}".format(e, i, np.mean(loss.numpy())))

    # -------------------------------------------------------
Z
Zeng Jinle 已提交
139 140


141 142 143 144
.. py:method:: from_generator(feed_list=None, capacity=None, use_double_buffer=True, iterable=True, return_list=False, use_multiprocess=False, drop_last=True)

.. note::
    框架保证DataLoader的数据加载顺序与用户提供的数据源读取顺序一致。
Z
Zeng Jinle 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

创建一个DataLoader对象用于加载Python生成器产生的数据。数据会由Python线程预先读取,并异步送入一个队列中。

本方法创建的DataLoader对象提供了3个方法设置数据源,分别是 :code:`set_sample_generator` , :code:`set_sample_list_generator` 和
:code:`set_batch_generator` 。请查阅下述示例代码了解它们的使用方法。

如果iterable = True,本方法创建的DataLoader对象时一个Python生成器,可以for-range的方法循环迭代。

如果iterable = False,本方法创建的DataLoader对象提供 :code:`start()` 和 :code:`reset()` 方法控制数据读取过程。此模式用于兼容
``fluid.layers.py_reader`` 的使用方式。用户可使用iterable = False模式,方便地将 ``fluid.layers.py_reader`` 的代码迁移至
``fluid.io.DataLoader`` 。

参数:
    - **feed_list** (list(Variable)|tuple(Variable)) - feed变量列表,由 ``fluid.layers.data()`` 创建。
    - **capacity** (int) - DataLoader对象内部维护队列的容量大小。单位是batch数量。若reader读取速度较快,建议设置较大的capacity值。
    - **use_double_buffer** (bool) - 是否使用 ``double_buffer_reader`` 。若use_double_buffer=True,DataLoader会异步地预读取下一个batch的数据,可加速数据读取过程,但同时会占用少量的CPU/GPU存储,即一个batch输入数据的存储空间。
    - **iterable** (bool) - 所创建的DataLoader对象是否可迭代。
    - **return_list** (bool) - 每个设备上的数据是否以list形式返回。仅在iterable = True模式下有效。若return_list = False,每个设备上的返回数据均是str -> LoDTensor的映射表,其中映射表的key是每个输入变量的名称。若return_list = True,则每个设备上的返回数据均是list(LoDTensor)。推荐在静态图模式下使用return_list = False,在动态图模式下使用return_list = True。
163
    - **use_multiprocess** (bool) - 设置是否是用多进程加速动态图的数据载入过程。注意:该参数的设置仅在动态图模式下有效, 在静态图模式下,该参数设置与否均无任何影响。默认值为False。
164
    - **drop_last** (bool): 是否丢弃最后的不足CPU/GPU设备数的批次。默认值为True。在网络训练时,用户不能设置drop_last=False,此时所有CPU/GPU设备均应从DataLoader中读取到数据。在网络预测时,用户可以设置drop_last=False,此时最后不足CPU/GPU设备数的批次可以进行预测。
Z
Zeng Jinle 已提交
165 166 167 168 169

返回: 被创建的DataLoader对象

返回类型: loader (DataLoader)

170
**代码示例 1**
Z
Zeng Jinle 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

.. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            BATCH_NUM = 10
            BATCH_SIZE = 16
            EPOCH_NUM = 4

            CLASS_NUM = 10

            ITERABLE = True # whether the created DataLoader object is iterable
            USE_GPU = False # whether to use GPU

            DATA_FORMAT = 'batch_generator' # data format of data source user provides

            def simple_net(image, label):
                fc_tmp = fluid.layers.fc(image, size=CLASS_NUM)
                cross_entropy = fluid.layers.softmax_with_cross_entropy(image, label)
                loss = fluid.layers.reduce_mean(cross_entropy)
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)
                return loss

            def get_random_images_and_labels(image_shape, label_shape):
                image = np.random.random(size=image_shape).astype('float32')
                label = np.random.random(size=label_shape).astype('int64')
                return image, label

            # If the data generator yields one sample each time,
            # use DataLoader.set_sample_generator to set the data source.
            def sample_generator_creator():
                def __reader__():
                    for _ in range(BATCH_NUM * BATCH_SIZE):
                        image, label = get_random_images_and_labels([784], [1])
                        yield image, label

                return __reader__

            # If the data generator yield list of samples each time,
            # use DataLoader.set_sample_list_generator to set the data source.
            def sample_list_generator_creator():
                def __reader__():
                    for _ in range(BATCH_NUM):
                        sample_list = []
                        for _ in range(BATCH_SIZE):
                            image, label = get_random_images_and_labels([784], [1])
                            sample_list.append([image, label])

                        yield sample_list

                return __reader__

            # If the data generator yields a batch each time,
            # use DataLoader.set_batch_generator to set the data source.
            def batch_generator_creator():
                def __reader__():
                    for _ in range(BATCH_NUM):
                        batch_image, batch_label = get_random_images_and_labels([BATCH_SIZE, 784], [BATCH_SIZE, 1])
                        yield batch_image, batch_label

                return __reader__

            # If DataLoader is iterable, use for loop to train the network
            def train_iterable(exe, prog, loss, loader):
                for _ in range(EPOCH_NUM):
                    for data in loader():
                        exe.run(prog, feed=data, fetch_list=[loss])

            # If DataLoader is not iterable, use start() and reset() method to control the process
            def train_non_iterable(exe, prog, loss, loader):
                for _ in range(EPOCH_NUM):
                    loader.start() # call DataLoader.start() before each epoch starts
                    try:
                        while True:
                            exe.run(prog, fetch_list=[loss])
                    except fluid.core.EOFException:
                        loader.reset() # call DataLoader.reset() after catching EOFException

            def set_data_source(loader, places):
                if DATA_FORMAT == 'sample_generator':
                    loader.set_sample_generator(sample_generator_creator(), batch_size=BATCH_SIZE, drop_last=True, places=places)
                elif DATA_FORMAT == 'sample_list_generator':
                    loader.set_sample_list_generator(sample_list_generator_creator(), places=places)
                elif DATA_FORMAT == 'batch_generator':
                    loader.set_batch_generator(batch_generator_creator(), places=places)
                else:
                    raise ValueError('Unsupported data format')

            image = fluid.layers.data(name='image', shape=[784], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')

            # Define DataLoader
            loader = fluid.io.DataLoader.from_generator(feed_list=[image, label], capacity=16, iterable=ITERABLE)

            # Define network
            loss = simple_net(image, label)

            # Set data source of DataLoader
            #
            # If DataLoader is iterable, places must be given and the number of places must be the same with device number.
            #  - If you are using GPU, call `fluid.cuda_places()` to get all GPU places.
            #  - If you are using CPU, call `fluid.cpu_places()` to get all CPU places.
            #
            # If DataLoader is not iterable, places can be None.
            places = fluid.cuda_places() if USE_GPU else fluid.cpu_places()
            set_data_source(loader, places)

            exe = fluid.Executor(places[0])
            exe.run(fluid.default_startup_program())

            prog = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(loss_name=loss.name)

            if loader.iterable:
                train_iterable(exe, prog, loss, loader)
            else:
                train_non_iterable(exe, prog, loss, loader)


            '''
            Users can use return_list = True in dygraph mode.
            '''
            with fluid.dygraph.guard(places[0]):
                loader = fluid.io.DataLoader.from_generator(capacity=2, return_list=True)
                set_data_source(loader, places[0])
                for image, label in loader():
                    relu = fluid.layers.relu(image)
                    assert image.shape == [BATCH_SIZE, 784]
                    assert label.shape == [BATCH_SIZE, 1]
                    assert relu.shape == [BATCH_SIZE, 784]


304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
**代码示例 2**

.. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            import os

            # We use 2 CPU cores to run inference network
            os.environ['CPU_NUM'] = '2'

            # The data source has only 3 batches, which can not be
            # divided evenly to each CPU core
            def batch_generator():
                for i in range(3):
                    yield np.array([i+1]).astype('float32'),

            x = fluid.data(name='x', shape=[None], dtype='float32')
            y = x * x

            def run_inference(drop_last):
                loader = fluid.io.DataLoader.from_generator(feed_list=[x],
                        capacity=8, drop_last=drop_last)
                loader.set_batch_generator(batch_generator, fluid.cpu_places())

                exe = fluid.Executor(fluid.CPUPlace())
                prog = fluid.CompiledProgram(fluid.default_main_program())
                prog = prog.with_data_parallel()

                result = []
                for data in loader():
                    each_ret, = exe.run(prog, feed=data, fetch_list=[y])
                    result.extend(each_ret)
                return result

            # Set drop_last to True, so that the last batch whose
            # number is less than CPU core number would be discarded.
            print(run_inference(drop_last=True)) # [1.0, 4.0]

            # Set drop_last to False, so that the last batch whose
            # number is less than CPU core number can be tested.
            print(run_inference(drop_last=False)) # [1.0, 4.0, 9.0]


Z
Zeng Jinle 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
.. py:method:: from_dataset(dataset, places, drop_last=True)

创建一个DataLoader对象用于加载Dataset产生的数据。目前,Dataset仅支持Linux系统下使用。

参数:
    - **dataset** (InMemoryDataset|QueueDataset) - Dataset对象。
    - **places** (list(CUDAPlace)|list(CPUPlace)) - DataLoader对象返回数据所在的place。
    - **drop_last** (bool) - 是否丢弃最后样本数量不足batch size的batch。若drop_last = True则丢弃,若drop_last = False则不丢弃。

返回: 被创建的DataLoader对象,可以for-range的方式循环迭代

返回类型: loader (DataLoader)

**代码示例**

.. code-block:: python

            import paddle.fluid as fluid

            image = fluid.layers.data(name='image', shape=[784], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')

            dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
            dataset.set_batch_size(32)
            dataset.set_filelist(['a.txt', 'b.txt', 'c.txt'])
            dataset.set_use_var([image, label])
            dataset.set_pipe_command('cat')

            loader = fluid.io.DataLoader.from_dataset(dataset, fluid.cpu_places())