AdamOptimizer_cn.rst 7.8 KB
Newer Older
H
Hao Wang 已提交
1 2 3 4 5 6 7 8 9 10 11
.. _cn_api_fluid_optimizer_AdamOptimizer:

AdamOptimizer
-------------------------------

.. py:class:: paddle.fluid.optimizer.AdamOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, regularization=None, name=None, lazy_mode=False)

该函数实现了自适应矩估计优化器,介绍自 `Adam论文 <https://arxiv.org/abs/1412.6980>`_ 的第二节。Adam是一阶基于梯度下降的算法,基于自适应低阶矩估计。
Adam更新如下:

.. math::
12 13 14 15 16 17 18 19
    \\t = t + 1
.. math::
    moment\_1\_out=\beta_1∗moment\_1+(1−\beta_1)∗grad
.. math::
    moment\_2\_out=\beta_2∗moment\_2+(1−\beta_2)∗grad*grad
.. math::
    learning\_rate=\frac{learning\_rate}{1-\beta_1^t}
.. math::
20
    param\_out=param-learning\_rate*\frac{moment\_1}{\sqrt{moment\_2}+\epsilon}\\
H
Hao Wang 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33

参数: 
    - **learning_rate** (float|Variable)-学习率,用于更新参数。作为数据参数,可以是一个浮点类型值或有一个浮点类型值的变量
    - **beta1** (float)-一阶矩估计的指数衰减率
    - **beta2** (float)-二阶矩估计的指数衰减率
    - **epsilon** (float)-保持数值稳定性的短浮点类型值
    - **regularization** - 规则化函数,例如''fluid.regularizer.L2DecayRegularizer
    - **name** - 可选名称前缀
    - **lazy_mode** (bool: false) - 官方Adam算法有两个移动平均累加器(moving-average accumulators)。累加器在每一步都会更新。在密集模式和稀疏模式下,两条移动平均线的每个元素都会更新。如果参数非常大,那么更新可能很慢。 lazy mode仅更新当前具有梯度的元素,所以它会更快。但是这种模式与原始的算法有不同的描述,可能会导致不同的结果。


**代码示例**:

34
.. code-block:: python
H
Hao Wang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

    import paddle
    import paddle.fluid as fluid
     
    place = fluid.CPUPlace()
    main = fluid.Program()
    with fluid.program_guard(main):
        x = fluid.layers.data(name='x', shape=[13], dtype='float32')
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        y_predict = fluid.layers.fc(input=x, size=1, act=None)
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
        adam_optimizer.minimize(avg_cost)

        fetch_list = [avg_cost]
        train_reader = paddle.batch(
            paddle.dataset.uci_housing.train(), batch_size=1)
        feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        for data in train_reader():
            exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)



61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
.. py:method:: apply_gradients(params_grads)

为给定的params_grads对附加优化算子,为minimize过程的第二步

参数:
    - **params_grads** (list)- 用于优化的(param, grad)对组成的列表

返回:  附加在当前Program的算子组成的列表

返回类型:  list

**代码示例**

.. code-block:: python

    import paddle.fluid as fluid
    loss = network()
    optimizer = fluid.optimizer.SGD(learning_rate=0.1)
    params_grads = optimizer.backward(loss)
    # you may append operations for params_grads here
    # ...
    optimizer.apply_gradients(params_grads)


.. py:method:: apply_optimize(loss, startup_program, params_grads)

为给定的params_grads对附加优化算子,为minimize过程的第二步。

参数:
    - **loss** (Variable) – 用于优化过程的损失值变量
    - **startup_program** (Program) – 用于初始化在parameter_list中参数的startup_program
    - **params_grads** (list)- 用于优化的(param, grad)对组成的列表

返回:  附加在当前Program的算子组成的列表

返回类型:  list

.. py:method:: backward(loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None)

自动做diff来向当前program附加反向算子,为minimize过程的第一步。

参数:
    - **loss** (Variable) – 用于优化过程的损失值变量
    - **startup_program** (Program) – 用于初始化在parameter_list中参数的startup_program
    - **parameter_list** (list) – 待更新的Variables组成的列表
    - **no_grad_set** (set|None) – 应该被无视的Variables集合
    - **callbacks** (list|None) – 当为某参数附加反向算子时所要运行的callables组成的列表

返回:  附加在当前Program的算子组成的列表

返回类型:  list

**代码示例**

详见apply_gradients的示例


.. py:method:: load(stat_dict)

在dygraph模式下,附带学习率衰减来加载优化器。

参数:
    - **stat_dict** – load_persistable方法加载的dict

**代码示例**

.. code-block:: python

    from __future__ import print_function
    import numpy as np
    import paddle
    import paddle.fluid as fluid
    from paddle.fluid.optimizer import SGDOptimizer
    from paddle.fluid.dygraph.nn import FC
    from paddle.fluid.dygraph.base import to_variable

    class MLP(fluid.Layer):
        def __init__(self, name_scope):
            super(MLP, self).__init__(name_scope)

            self._fc1 = FC(self.full_name(), 10)
            self._fc2 = FC(self.full_name(), 10)

        def forward(self, inputs):
            y = self._fc1(inputs)
            y = self._fc2(y)
            return y

    with fluid.dygraph.guard():
        mlp = MLP('mlp')
        optimizer2 = SGDOptimizer(
            learning_rate=fluid.layers.natural_exp_decay(
            learning_rate=0.1,
            decay_steps=10000,
            decay_rate=0.5,
            staircase=True))

        train_reader = paddle.batch(
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)

        for batch_id, data in enumerate(train_reader()):
            dy_x_data = np.array(
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')

            y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    128, 1)

            img = to_variable(dy_x_data)
            label = to_variable(y_data)
            label._stop_gradient = True
            cost = mlp(img)
            avg_loss = fluid.layers.reduce_mean(cost)
            avg_loss.backward()
            optimizer.minimize(avg_loss)
            mlp.clear_gradients()
            fluid.dygraph.save_persistables(
                    mlp.state_dict(), [optimizer, optimizer2], "save_dir_2")
            if batch_id == 2:
                    break

    with fluid.dygraph.guard():
        mlp_load = MLP('mlp')
        optimizer_load2 = SGDOptimizer(
                learning_rate=fluid.layers.natural_exp_decay(
                learning_rate=0.1,
                decay_steps=10000,
                decay_rate=0.5,
                staircase=True))
        parameters, optimizers = fluid.dygraph.load_persistables(
            "save_dir_2")
        mlp_load.load_dict(parameters)
        optimizer_load2.load(optimizers)
    self.assertTrue(optimizer2._learning_rate.__dict__ == optimizer_load2._learning_rate.__dict__)


.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)


通过更新parameter_list来添加操作,进而使损失最小化。

该算子相当于backward()和apply_gradients()功能的合体。

参数:
    - **loss** (Variable) – 用于优化过程的损失值变量
    - **startup_program** (Program) – 用于初始化在parameter_list中参数的startup_program
    - **parameter_list** (list) – 待更新的Variables组成的列表
    - **no_grad_set** (set|None) – 应该被无视的Variables集合
    - **grad_clip** (GradClipBase|None) – 梯度裁剪的策略

返回: (optimize_ops, params_grads),分别为附加的算子列表;一个由(param, grad) 变量对组成的列表,用于优化

返回类型:   tuple



H
Hao Wang 已提交
216 217 218 219 220