embedding_cn.rst 5.0 KB
Newer Older
1 2 3 4 5
.. _cn_api_fluid_embedding:

embedding
-------------------------------

L
liuwei1031 已提交
6
:api_attr: 声明式编程模式(静态图)
7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
.. py:function:: paddle.fluid.embedding(input, size, is_sparse=False, is_distributed=False, padding_idx=None, param_attr=None, dtype='float32')

该OP根据input中的id信息从embedding矩阵中查询对应embedding信息,函数会根据输入的size (vocab_size, emb_size)和dtype自动构造一个二维embedding矩阵。

输出的Tensor的shape是在输入Tensor shape的最后一维后面添加了emb_size的维度。

注:input中的id必须满足 ``0 =< id < size[0]``,否则程序会抛异常退出。


::

    Case 1:

    input是Tensor, 且padding_idx = -1
        input.data = [[1, 3], [2, 4], [4, 127]]
        input.shape = [3, 2]
    若size = [128, 16]
    输出为Tensor:
        out.shape = [3, 2, 16]
        out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                     [0.345421456, 0.524563927, ..., 0.144534654]],

                    [[0.345249859, 0.124939536, ..., 0.194353745],
                     [0.945345345, 0.435394634, ..., 0.435345365]],

                    [[0.945345345, 0.435394634, ..., 0.435345365],
                     [0.0,         0.0,         ..., 0.0        ]]]  # padding data
    输入的padding_idx小于0,则自动转换为padding_idx = -1 + 128 = 127, 对于输入id为127的词,进行padding处理。
    
    Case 2:

    input是lod level 为1的LoDTensor, 且padding_idx = 0
        input.lod = [[2, 3]]
        input.data = [[1], [3], [2], [4], [0]]
        input.shape = [5, 1]
    若size = [128, 16]
    输出为LoDTensor:
        out.lod = [[2, 3]]
        out.shape = [5, 1, 16]
        out.data = [[[0.129435295, 0.244512452, ..., 0.436322452]],
                    [[0.345421456, 0.524563927, ..., 0.144534654]],
                    [[0.345249859, 0.124939536, ..., 0.194353745]],
                    [[0.945345345, 0.435394634, ..., 0.435345365]],
                    [[0.0,         0.0,         ..., 0.0        ]]]  # padding data
    输入的padding_idx = 0,则对于输入id为0的词,进行padding处理。


参数:
56
    - **input** (Variable) - 存储id信息的Tensor或LoDTensor,数据类型必须为:int64。input中的id必须满足 ``0 =< id < size[0]`` 。
57 58
    - **size** (tuple|list) - embedding矩阵的维度。必须包含两个元素,第一个元素为vocab_size(词表大小), 第二个为emb_size(embedding层维度)。
    - **is_sparse** (bool) - 是否使用稀疏的更新方式,这个参数只会影响反向的梯度更新的性能,sparse更新速度更快,推荐使用稀疏更新的方式。但某些optimizer不支持sparse更新,比如 :ref:`cn_api_fluid_optimizer_AdadeltaOptimizer` 、 :ref:`cn_api_fluid_optimizer_AdamaxOptimizer` 、 :ref:`cn_api_fluid_optimizer_DecayedAdagradOptimizer` 、 :ref:`cn_api_fluid_optimizer_FtrlOptimizer` 、 :ref:`cn_api_fluid_optimizer_LambOptimizer` 、:ref:`cn_api_fluid_optimizer_LarsMomentumOptimizer` ,此时is_sparse必须为False。默认为False。
59 60
    - **is_distributed** (bool) - 是否使用分布式的方式存储embedding矩阵,仅在多机分布式cpu训练中使用。默认为False。
    - **padding_idx** (int|long|None) - padding_idx需在区间[-vocab_size, vocab_size),否则不生效,padding_idx<0时,padding_idx 会被改成 vocab_size + padding_idx,input中等于padding_index的id对应的embedding信息会被设置为0,且这部分填充数据在训练时将不会被更新。如果为none,不作处理,默认为None。
61
    - **param_attr** (ParamAttr) - 指定权重参数属性的对象。默认值为None,表示使用默认的权重参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。此外,可以通过 ``param_attr`` 参数加载用户自定义或预训练的词向量。只需将本地词向量转为numpy数据格式,且保证本地词向量的shape和embedding的 ``size`` 参数一致,然后使用 :ref:`cn_api_fluid_initializer_NumpyArrayInitializer` 进行初始化,即可实现加载自定义或预训练的词向量。详细使用方法见代码示例2。
62
    - **dtype** (str|core.VarDesc.VarType) - 输出Tensor或LoDTensor的数据类型,数据类型必须为:float32,float64,默认为float32。
63 64 65 66 67 68 69 70 71 72 73

返回:input映射后embedding Tensor或LoDTensor,数据类型和dtype定义的类型一致。

返回类型:Variable

**代码示例**:

.. code-block:: python

    import paddle.fluid as fluid
    data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
74 75 76 77 78 79 80 81 82 83 84 85

    # 示例 1
    emb_1 = fluid.embedding(input=data, size=[128, 64])

    # 示例 2: 加载用户自定义或预训练的词向量
    weight_data = np.random.random(size=(128, 100))  # numpy格式的词向量数据
    w_param_attrs = fluid.ParamAttr(
        name="emb_weight",
        learning_rate=0.5,
        initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
        trainable=True)
    emb_2 = fluid.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')
86 87 88 89 90 91 92 93 94