DGCMomentumOptimizer_cn.rst 8.4 KB
Newer Older
H
Hao Wang 已提交
1 2 3 4 5 6 7
.. _cn_api_fluid_optimizer_DGCMomentumOptimizer:

DGCMomentumOptimizer
-------------------------------

.. py:class:: paddle.fluid.optimizer.DGCMomentumOptimizer(learning_rate, momentum, rampup_begin_step, rampup_step=1, sparsity=[0.999], use_nesterov=False, local_grad_clip_norm=None, num_trainers=None, regularization=None, name=None)

W
WangXi 已提交
8
DGC(深度梯度压缩)Momentum 优化器。原始论文: https://arxiv.org/abs/1712.01887
H
Hao Wang 已提交
9

W
WangXi 已提交
10
DGC通过只传送重要梯度(稀疏更新)的方式,即只发送大于给定阈值的梯度,来减少通信带宽使用。
H
Hao Wang 已提交
11

W
WangXi 已提交
12
DGC会在本地累加剩余梯度以避免信息的丢失。最终这些梯度会大到足以传输。
H
Hao Wang 已提交
13

W
WangXi 已提交
14
因此,DGC只会立即发送大梯度,但随时间流逝所有梯度终将发送出去。
H
Hao Wang 已提交
15

W
WangXi 已提交
16
为确保精度不会损失,DGC在梯度稀疏化之上采用动量修正和局部梯度修剪(clip)来维持模型性能。
H
Hao Wang 已提交
17

W
WangXi 已提交
18
DGC还使用动量因子掩藏(momentum factor masking)和预训练(warm-up)来克服由于规约(reduced)通信而导致的数据陈旧性(staleness)问题。
H
Hao Wang 已提交
19 20 21

这个优化器会执行如下操作:

W
WangXi 已提交
22 23
1. 从张量中获取的前TopK个重要梯度进行压缩,并将其用于allreduce通信以减少网络带宽使用。
2. 调用momentum来优化代价函数。
H
Hao Wang 已提交
24 25 26 27 28

参数: 
    - **learning_rate** (float | Variable) - 用于更新参数的学习率。可以是浮点值或由一个浮点型数据组成的Variable。
    - **momentum** (float) - 动量因子。
    - **rampup_begin_step** (int) - 进行梯度压缩的起步点。
W
WangXi 已提交
29 30 31 32 33 34 35
    - **rampup_step** (int) - 使用稀疏预热的时间步长。默认值为1。例如:如果稀疏度为[0.75,0.9375,0.984375,0.996,0.999],并且rampup_step为100,则在0~19步时使用0.75,在20~39步时使用0.9375,依此类推。当到达sparsity数组末尾时,此后将会使用0.999。
    - **sparsity** (list [float]) - 从梯度张量中获取top个重要元素,比率为(1-当前稀疏度)。默认值为[0.999]。例如:如果sparsity为[0.99, 0.999],则将传输top [1%, 0.1%]的重要元素。
    - **use_nesterov** (bool) - 启用Nesterov momentum。 True意味着使用Nesterov。默认值False。
    - **local_grad_clip_norm** (float,可选) - 局部梯度裁减标准值。可选,默认为None,表示不需要裁减。
    - **num_trainers** (int,可选) - 训练节点的数量。可选,默认为None。
    - **regularization** (WeightDecayRegularizer,可选) - 正则器, 如 :ref:`cn_api_fluid_regularizer_L2DecayRegularizer`。可选,默认为None。
    - **name** (str,可选) - 该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` ,默认值为None。
H
Hao Wang 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

**代码示例**

.. code-block:: python

    import paddle.fluid as fluid
    optimizer = fluid.optimizer.DGCMomentumOptimizer(
                                        learning_rate=0.0001,
                                        momentum=0.9,
                                        rampup_step=1000,
                                        rampup_begin_step=1252,
                                        sparsity=[0.999, 0.999])



51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

.. py:method:: apply_gradients(params_grads)

为给定的params_grads对附加优化算子,为minimize过程的第二步

参数:
    - **params_grads** (list)- 用于优化的(param, grad)对组成的列表

返回:  附加在当前Program的算子组成的列表

返回类型:  list

**代码示例**

.. code-block:: python

    import paddle.fluid as fluid
    loss = network()
    optimizer = fluid.optimizer.SGD(learning_rate=0.1)
    params_grads = optimizer.backward(loss)
    # you may append operations for params_grads here
    # ...
    optimizer.apply_gradients(params_grads)


.. py:method:: apply_optimize(loss, startup_program, params_grads)

为给定的params_grads对附加优化算子,为minimize过程的第二步。

参数:
    - **loss** (Variable) – 用于优化过程的损失值变量
    - **startup_program** (Program) – 用于初始化在parameter_list中参数的startup_program
    - **params_grads** (list)- 用于优化的(param, grad)对组成的列表

返回:  附加在当前Program的算子组成的列表

返回类型:  list

.. py:method:: backward(loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None)

自动做diff来向当前program附加反向算子,为minimize过程的第一步。

参数:
94 95 96 97 98
    - **loss** (Variable) – 需要最小化的损失值变量
    - **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
    - **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
    - **no_grad_set** (set, 可选) – 不需要更新的Parameter或者Parameter.name组成的集合,默认值为None
    - **callbacks** (list, 可选) – 当为某参数附加反向算子时所要运行的callables组成的列表
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

返回:  附加在当前Program的算子组成的列表

返回类型:  list

**代码示例**

详见apply_gradients的示例


.. py:method:: load(stat_dict)

在dygraph模式下,附带学习率衰减来加载优化器。

参数:
    - **stat_dict** – load_persistable方法加载的dict

**代码示例**

.. code-block:: python

    from __future__ import print_function
    import numpy as np
    import paddle
    import paddle.fluid as fluid
    from paddle.fluid.optimizer import SGDOptimizer
    from paddle.fluid.dygraph.nn import FC
    from paddle.fluid.dygraph.base import to_variable

    class MLP(fluid.Layer):
        def __init__(self, name_scope):
            super(MLP, self).__init__(name_scope)

            self._fc1 = FC(self.full_name(), 10)
            self._fc2 = FC(self.full_name(), 10)

        def forward(self, inputs):
            y = self._fc1(inputs)
            y = self._fc2(y)
            return y

    with fluid.dygraph.guard():
        mlp = MLP('mlp')
        optimizer2 = SGDOptimizer(
            learning_rate=fluid.layers.natural_exp_decay(
            learning_rate=0.1,
            decay_steps=10000,
            decay_rate=0.5,
            staircase=True))

        train_reader = paddle.batch(
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)

        for batch_id, data in enumerate(train_reader()):
            dy_x_data = np.array(
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')

            y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    128, 1)

            img = to_variable(dy_x_data)
            label = to_variable(y_data)
            label._stop_gradient = True
            cost = mlp(img)
            avg_loss = fluid.layers.reduce_mean(cost)
            avg_loss.backward()
            optimizer.minimize(avg_loss)
            mlp.clear_gradients()
            fluid.dygraph.save_persistables(
                    mlp.state_dict(), [optimizer, optimizer2], "save_dir_2")
            if batch_id == 2:
                    break

    with fluid.dygraph.guard():
        mlp_load = MLP('mlp')
        optimizer_load2 = SGDOptimizer(
                learning_rate=fluid.layers.natural_exp_decay(
                learning_rate=0.1,
                decay_steps=10000,
                decay_rate=0.5,
                staircase=True))
        parameters, optimizers = fluid.dygraph.load_persistables(
            "save_dir_2")
        mlp_load.load_dict(parameters)
        optimizer_load2.load(optimizers)
    self.assertTrue(optimizer2._learning_rate.__dict__ == optimizer_load2._learning_rate.__dict__)


.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)


通过更新parameter_list来添加操作,进而使损失最小化。

该算子相当于backward()和apply_gradients()功能的合体。

参数:
    - **loss** (Variable) – 用于优化过程的损失值变量
    - **startup_program** (Program) – 用于初始化在parameter_list中参数的startup_program
    - **parameter_list** (list) – 待更新的Variables组成的列表
    - **no_grad_set** (set|None) – 应该被无视的Variables集合
    - **grad_clip** (GradClipBase|None) – 梯度裁剪的策略

返回: (optimize_ops, params_grads),分别为附加的算子列表;一个由(param, grad) 变量对组成的列表,用于优化

返回类型:   tuple