debugging_en.md 5.5 KB
Newer Older
A
Aurelius84 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
# Debugging Methods

This section will introduce several debugging methods recommended by Dynamic Graph to Static Graph (hereafter called Dynamic-to-Staic).

> **NOTE:**
>
> Please ensure that the dynamic graph code before transformation can run successfully. It is recommended to call [paddle.jit.ProgramTranslator().enable(False)](../../api/dygraph/ProgramTranslator_en.html#enable) to disable Dynamic-to-Static, and run dynamic graph code as follows:


```python
import paddle
import numpy as np
paddle.disable_static()

# Disable Dynamic-to-Static
paddle.jit.ProgramTranslator().enable(False)

@paddle.jit.to_static
def func(x):
    x = paddle.to_tensor(x)
    if x > 3:
        x = x - 1
    return x

func(np.ones([3, 2]))
```

## Breakpoint Debugging
When using Dynamic-to-Static, you can use breakpoints to debug.

For example, call `pdb.set_trace()` in your code:
```Python
import pdb

@paddle.jit.to_static
def func(x):
    x = paddle.to_tensor(x)
    pdb.set_trace()
    if x > 3:
        x = x - 1
    return x
```
Executing the following code will land the debugger in the transformed static graph code:
```Python
func(np.ones([3, 2]))
```

```bash
> /tmp/tmpR809hf.py(6)func()
-> def true_fn_0(x):
(Pdb) n
> /tmp/tmpR809hf.py(6)func()
-> def false_fn_0(x):
...
```

Calling [`paddle.jit.ProgramTranslator().enable(False)`](../../api/dygraph/ProgramTranslator_en.html#enable) before executing the code will land the debugger in the original dynamic graph code:
```python
paddle.jit.ProgramTranslator().enable(False)
func(np.ones([3, 2]))
```

```bash
> <ipython-input-22-0bd4eab35cd5>(10)func()
-> if x > 3:
...

```

## Print Transformed Code

There are two ways to print the transformed static graph code:

1. Use the attribute `code` of the decorated function:
    ```Python
    @paddle.jit.to_static
    def func(x):
    x = paddle.to_tensor(x)
        if x > 3:
            x = x - 1
        return x

    print(func.code)
    ```
    ```bash

    def func(x):
        x = fluid.layers.assign(x)

        def true_fn_0(x):
            x = x - 1
            return x

        def false_fn_0(x):
            return x
        x = fluid.dygraph.dygraph_to_static.convert_operators.convert_ifelse(x >
            3, true_fn_0, false_fn_0, (x,), (x,), (x,))
        return x
    ```
2. Call `set_code_level(level)` or set environment variable `TRANSLATOR_CODE_LEVEL=level`

    You can view the transformed code in the log by calling `set_code_level` or set environment variable `TRANSLATOR_CODE_LEVEL`.

    ```python
    @paddle.jit.to_static
       def func(x):
       x = paddle.to_tensor(x)
       if x > 3:
           x = x - 1
       return x

    paddle.jit.set_code_level() # the same effect to set os.environ["TRANSLATOR_CODE_LEVEL"] = '100'
    func(np.ones([1]))
    ```

    ```bash
    2020-XX-XX 00:00:00,980-INFO: After the level 100 ast transformer: 'All Transformers', the transformed code:
    def func(x):
        x = fluid.layers.assign(x)

        def true_fn_0(x):
            x = x - 1
            return x

        def false_fn_0(x):
            return x
        x = fluid.dygraph.dygraph_to_static.convert_operators.convert_ifelse(x >
            3, true_fn_0, false_fn_0, (x,), (x,), (x,))
        return x
    ```
    `set_code_level` can set different levels to view the code transformed by different ast transformers. For details, please refer to [set_code_level]()<!--TODO:补充set_code_level文档链接-->。

## `print`
You can call `print` to view variables. `print` will be transformed when using Dynamic-to-Static. When only Paddle Tensor is printed, `print` will be transformed and call Paddle operator [Print](../../api/layers/Print.html) in runtime. Otherwise, call python `print`.

```python
@paddle.jit.to_static
def func(x):
    x = paddle.to_tensor(x)
    # x is a Paddle Tensor, so it will run Paddle Print(x) actually.
    print(x)

    # The string is not a Paddle Tensor, so it will run print as-is.
    print("Here call print function.")

    if len(x) > 3:
        x = x - 1
    else:
        x = paddle.ones(shape=[1])
    return x

func(np.ones([1]))
```

```bash
Variable: assign_0.tmp_0
  - lod: {}
  - place: CPUPlace
  - shape: [1]
  - layout: NCHW
  - dtype: double
  - data: [1]
Here call print function.  
```

## Log Printing
ProgramTranslator can log additional debugging information to help you know whether the function was successfully transformed or not.

You can call `paddle.jit.set_verbosity(level)` or set environment variable `TRANSLATOR_VERBOSITY=level` to enable logging and view logs of different levels. The argument `level` varies from 0 to 3:
- 0: no logging
- 1: includes the information in Dynamic-to-Static tranformation process, such as the source code not transformed, the callable object to transform and so on
- 2: includes above and more detailed function transformation logs
- 3: includes above and extremely verbose logging

> **WARNING:**
>
> The logs includes information such as source code. Please make sure logs don't contain any sensitive information before sharing them.

You can call `paddle.jit.set_verbosity` to control the verbosity level of logs:
```python
paddle.jit.set_verbosity(3)
```
or use the environment variable `TRANSLATOR_VERBOSITY`
```python
import os
os.environ["TRANSLATOR_VERBOSITY"] = '3'
```

```bash
2020-XX-XX 00:00:00,123-Level 1:    Source code:
@paddle.jit.to_static
def func(x):
    x = paddle.to_tensor(x)
    if len(x) > 3:
        x = x - 1
    else:
        x = paddle.ones(shape=[1])
    return x

2020-XX-XX 00:00:00,152-Level 1: Convert callable object: convert <built-in function len>.