gather_nd_cn.rst 2.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
.. _cn_api_fluid_layers_gather_nd:

gather_nd
-------------------------------

.. py:function:: paddle.fluid.layers.gather_nd(input, index, name=None)

该OP是 :code:`gather` 的高维推广,并且支持多轴同时索引。 :code:`index` 是一个K维度的张量,它可以认为是从 :code:`input` 中取K-1维张量,每一个元素是一个切片:

.. math::
    output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

显然, :code:`index.shape[-1] <= input.rank` 并且输出张量的维度是 :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` 。 

示例:

::

         给定:
             input = [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
             input.shape = (2, 3, 4)

         - 案例 1:
             index = [[1]]
             
             gather_nd(input, index)  
                      = [input[1, :, :]] 
                      = [[12, 13, 14, 15],
                         [16, 17, 18, 19],
                         [20, 21, 22, 23]]

         - 案例 2:

             index = [[0,2]]
             gather_nd(input, index)
                      = [input[0, 2, :]]
                      = [8, 9, 10, 11]

         - 案例 3:

             index = [[1, 2, 3]]
             gather_nd(input, index)
                      = [input[1, 2, 3]]
                      = [23]


参数:
G
Guo Sheng 已提交
53
    - **input** (Variable) - 输入张量,数据类型可以是int32,int64,float32,float64, bool。
54
    - **index** (Variable) - 输入的索引张量,数据类型为非负int32或非负int64。它的维度 :code:`index.rank` 必须大于1,并且 :code:`index.shape[-1] <= input.rank` 。
55 56 57 58 59 60 61 62 63 64 65
    - **name** (string) - 该层的名字,默认值为None,表示会自动命名。
    
返回:shape为index.shape[:-1] + input.shape[index.shape[-1]:]的Tensor|LoDTensor,数据类型与 :code:`input` 一致。

返回类型:Variable

**代码示例**:

.. code-block:: python

    import paddle.fluid as fluid
66 67
    x = fluid.data(name='x', shape=[3, 4, 5], dtype='float32')
    index = fluid.data(name='index', shape=[2, 2], dtype='int32')
68 69 70 71 72 73
    output = fluid.layers.gather_nd(x, index)