async_executor.md 9.5 KB
Newer Older
1 2
## Motivation of this work

3
There are many deep learning applications that use sparse features as inputs, such as sentiment analysis[1], word2vec[2], click through rate estimation[3]. Two characteristics exist in these applications: 1) large amount of training data exist in real world, especially in industrial environment. 2) input sparse features may not overlap in large ratio between data replicas if we use data-parallelism training method given large amount of training data. The two characteristics lead to an interesting problem of how to speed up data-parallel deep learning model with large amount of sparse features. A famous algorithm is Hogwild[4] proposed before the rise of deep learning. The authors of Hogwild state that stochasitic gradient descent algorithms can be implemented in lock-free mode that allows processors access to shared memory of model parameters and is able to over-write each-other's work. The authors show that when the associated optimization problem is sparse, Hogwild! can achieve a nearly optimal rate of convergence. In this work, we will implement an executor that can support Hogwild like update for deep learning training. Serveral experiments on natural language processing models will be conducted to show efficiency and convergence properties of the proposed executor.
4

D
dongdaxiang 已提交
5 6
## User Interface Design
``` python
G
guru4elephant 已提交
7
def train_loop():
G
guru4elephant 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
    # Download data
    with tarfile.open(paddle.dataset.common.download(URL, "imdb", MD5)) as tarf:
        tarf.extractall(path='./')
        tarf.close()
     # Initialize dataset description
    dataset = fluid.DataFeedDesc('train_data/data.prototxt')
    dataset.set_batch_size(128)  # See API doc for how to change other fields
    print dataset.desc()  # Debug purpose: see what we get
     # define network
    # input text data
    data = fluid.layers.data(
        name="words", shape=[1], dtype="int64", lod_level=1)
    # label data
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
     avg_cost, acc, prediction = bow_net(data, label)
G
guru4elephant 已提交
23 24
    sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=0.002)
    opt_ops, weight_and_grad = sgd_optimizer.minimize(avg_cost)
G
guru4elephant 已提交
25 26 27 28 29 30
     # Run startup program
    startup_program = fluid.default_startup_program()
    place = fluid.CPUPlace()
    executor = fluid.Executor(place)
    executor.run(startup_program)
    main_program = fluid.default_main_program()
G
guru4elephant 已提交
31
    epochs = 10
G
guru4elephant 已提交
32
    filelist = ["train_data/part-%d" % i for i in range(12)]
G
guru4elephant 已提交
33
    for i in range(epochs):
G
guru4elephant 已提交
34 35 36 37 38 39 40 41 42 43 44
        thread_num = 4
        executor.run_from_files(
            main_program,  # This can be changed during iteration
            dataset,  # This can be changed during iteration
            filelist,  # This can be changed during iteration
            thread_num,  # This can be changed during iteration
            [data, acc],  # Multiple fetch targets can be specified
            debug=False)
        fluid.io.save_inference_model('imdb/epoch%d.model' % i,
                                      [data.name, label.name], [acc], executor)

D
dongdaxiang 已提交
45
```
G
guru4elephant 已提交
46
## Difference between async_executor and other executors
G
guru4elephant 已提交
47
async_executor is mainly designed for cpu training scenarios where data throughputs are high and the computation part of training is not intensive compared with GPU trained models such as resnet-50. Since data throughputs ability is very important in async_executor, we have to design very fast data IO modules to handle very large scale data reading. Another different key aspect is that memory is not a problem in cpu training scenarios given 128G or 256G RAM in modern clusters. 
G
guru4elephant 已提交
48 49

executor and parallel_executor are designed for geneneral training cases in particular for gpu training. Executor is a single thread implementation for model training and it is mostly used for startup_program running currently. Another application scenario of executor is reinforcement learning where input data and main_program may change through training. Parallel_executor is mainly designed for synchronous training on high performance devices such as gpu. Operators are executed concurrently following topological orders on different graphs and model parameter gradients are synchrounized iteratively.
D
dongdaxiang 已提交
50 51

## Data Feeding Approach
G
guru4elephant 已提交
52
![Data Feeding Approach](https://github.com/guru4elephant/FluidDoc/blob/develop/doc/fluid/design/async_executor/async_executor_reader_design.png)
G
guru4elephant 已提交
53
Why we use multiple queues for data reader? a experimental result page needs to be added.
D
dongdaxiang 已提交
54

G
guru4elephant 已提交
55 56
## Main Interface of Async Executor
We have RunFromFiles interface which is an execution interface for users to call. Every time a user calls RunFromFiles, a main_program should be provided and it is running in the global scope previously defined. A list of file names and corresponding Dataset should be provided. Inside the RunFromFiles interface, readers will be created through Dataset configurations. Files will be fed into created readers. 
G
guru4elephant 已提交
57
``` c++
G
guru4elephant 已提交
58 59 60 61 62 63
void AsyncExecutor::RunFromFile(const ProgramDesc& main_program,
                                const std::string& data_feed_desc_str,
                                const std::vector<std::string>& filelist,
                                const int thread_num,
                                const std::vector<std::string>& fetch_var_names,
                                const bool debug) {
G
guru4elephant 已提交
64
  std::vector<std::thread> threads;
G
guru4elephant 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
   auto& block = main_program.Block(0);
  for (auto var_name : fetch_var_names) {
    auto var_desc = block.FindVar(var_name);
    auto shapes = var_desc->GetShape();
    PADDLE_ENFORCE(shapes[shapes.size() - 1] == 1,
                   "var %s: Fetched var has wrong shape, "
                   "only variables with the last dimension size 1 supported",
                   var_name);
  }
   DataFeedDesc data_feed_desc;
  google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
                                                &data_feed_desc);
   int actual_thread_num = thread_num;
  int file_cnt = filelist.size();
  PADDLE_ENFORCE(file_cnt > 0, "File list cannot be empty");
   if (actual_thread_num > file_cnt) {
    VLOG(1) << "Thread num = " << thread_num << ", file num = " << file_cnt
            << ". Changing thread_num = " << file_cnt;
    actual_thread_num = file_cnt;
  }
  std::vector<std::shared_ptr<DataFeed>> readers;
  PrepareReaders(readers, actual_thread_num, data_feed_desc, filelist);
   std::vector<std::shared_ptr<ExecutorThreadWorker>> workers;
  workers.resize(actual_thread_num);
G
guru4elephant 已提交
89 90 91
  for (auto& worker : workers) {
    worker.reset(new ExecutorThreadWorker);
  }
G
guru4elephant 已提交
92 93 94 95
   // prepare thread resource here
  for (int thidx = 0; thidx < actual_thread_num; ++thidx) {
    CreateThreads(workers[thidx].get(), main_program, readers[thidx],
                  fetch_var_names, root_scope_, thidx, debug);
G
guru4elephant 已提交
96
  }
G
guru4elephant 已提交
97 98 99 100
   // start executing ops in multiple threads
  for (int thidx = 0; thidx < actual_thread_num; ++thidx) {
    threads.push_back(
        std::thread(&ExecutorThreadWorker::TrainFiles, workers[thidx].get()));
G
guru4elephant 已提交
101
  }
G
guru4elephant 已提交
102
   for (auto& th : threads) {
G
guru4elephant 已提交
103 104
    th.join();
  }
G
guru4elephant 已提交
105 106
   root_scope_->DropKids();
   return;
G
guru4elephant 已提交
107
}
G
guru4elephant 已提交
108 109 110 111

```
Inside the function ```CreateThreads```, 
``` c++
G
guru4elephant 已提交
112 113 114 115 116 117 118 119 120
void AsyncExecutor::CreateThreads(
    ExecutorThreadWorker* worker,
    const ProgramDesc& main_program,
    const std::shared_ptr<DataFeed>& reader,
    const std::vector<std::string>& fetch_var_names,
    Scope& root_scope,
    const int thread_index) {
  worker->SetThreadId(thread_index);
  worker->SetRootScope(&root_scope);
G
guru4elephant 已提交
121 122
  worker->CreateThreadResource(main_program, place_);
  worker->SetDataFeed(reader);
G
guru4elephant 已提交
123 124
  worker->SetFetchVarNames(fetch_var_names);
  worker->BindingDataFeedMemory();
G
guru4elephant 已提交
125
}
G
guru4elephant 已提交
126

G
guru4elephant 已提交
127
```
G
guru4elephant 已提交
128 129 130 131
Inside the function ```Trainfiles```, 
``` c++
void ExecutorThreadWorker::TrainFiles() {
  // todo: configurable
G
guru4elephant 已提交
132
  SetDevice();
G
guru4elephant 已提交
133 134 135 136 137 138 139 140 141 142

  int fetch_var_num = fetch_var_names_.size();
  fetch_values_.clear();
  fetch_values_.resize(fetch_var_num, 0);

  thread_reader_->Start();

  int cur_batch;
  int batch_cnt = 0;
  while ((cur_batch = thread_reader_->Next()) > 0) {
G
guru4elephant 已提交
143
    // executor run here
G
guru4elephant 已提交
144 145 146
    for (auto& op : ops_) {
      op->Run(*thread_scope_, place_);
    }
G
guru4elephant 已提交
147 148 149 150 151 152 153 154 155 156

    float avg_inspect = 0.0;
    for (int i = 0; i < fetch_var_num; ++i) {
      avg_inspect = thread_scope_->FindVar(fetch_var_names_[i])
                                 ->GetMutable<LoDTensor>()
                                 ->data<float>()[0];
      fetch_values_[i] += avg_inspect;
    }

    ++batch_cnt;
G
guru4elephant 已提交
157 158
    thread_scope_->DropKids();
  }
G
guru4elephant 已提交
159 160 161 162 163 164 165

  if (batch_cnt) {
    // when the number of files is less than the number of threads
    for (int i = 0; i < fetch_var_num; ++i) {
      fetch_values_[i] = fetch_values_[i] / batch_cnt;
    }
  }
G
guru4elephant 已提交
166

G
guru4elephant 已提交
167
```
D
dongdaxiang 已提交
168 169

## How to print variable information during execution
G
guru4elephant 已提交
170
Inside async_executor, no information is printed. Variable can be fetched through an execution of async_executor. The fetched variables can be printed through python. Since we train several files of instances within async_executor, the fetched variables are not accurate. In this version of design, we only fetch variables of the last iteration for each thread and we average the fetched variables by batch_size * thread_num. 
D
dongdaxiang 已提交
171 172

## How to save models
G
guru4elephant 已提交
173 174
Models can be saved between execution of async_executor through io.save method. 

G
guru4elephant 已提交
175 176 177 178 179 180
## POC experiments
### Text Classification
* network configuration
* data preparation
* performance and accuracy

181 182 183 184
## references
1. [Sentiment Analysis](https://arxiv.org/pdf/1801.07883.pdf)
2. [Word2Vec](https://arxiv.org/abs/1301.3781)
3. [Click Through Rate Estimation](https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/45530.pdf)
G
guru4elephant 已提交
185
4. [Hogwild](https://people.eecs.berkeley.edu/~brecht/papers/hogwildTR.pdf)