seq2seq.py 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import six

import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers

dict_size = 30000
source_dict_size = target_dict_size = dict_size
bos_id = 0
eos_id = 1
word_dim = 512
hidden_dim = 512
decoder_size = hidden_dim
max_length = 256
beam_size = 4
batch_size = 64

model_save_dir = "machine_translation.inference.model"


class DecoderCell(layers.RNNCell):
    """Additive Attention followed by GRU"""

    def __init__(self, hidden_size):
        self.hidden_size = hidden_size
        self.gru_cell = layers.GRUCell(hidden_size)

    def attention(self, hidden, encoder_output, encoder_output_proj,
                  encoder_padding_mask):
        decoder_state_proj = layers.unsqueeze(
            layers.fc(hidden, size=self.hidden_size, bias_attr=False), [1])
        mixed_state = fluid.layers.elementwise_add(
            encoder_output_proj,
            layers.expand(decoder_state_proj,
                          [1, layers.shape(decoder_state_proj)[1], 1]))
        # attn_scores: [batch_size, src_seq_len]
        attn_scores = layers.squeeze(
            layers.fc(
                input=mixed_state, size=1, num_flatten_dims=2,
                bias_attr=False), [2])
        if encoder_padding_mask is not None:
            attn_scores = layers.elementwise_add(attn_scores,
                                                 encoder_padding_mask)
        attn_scores = layers.softmax(attn_scores)
        context = layers.reduce_sum(
            layers.elementwise_mul(encoder_output, attn_scores, axis=0), dim=1)
        return context

    def call(self,
             step_input,
             hidden,
             encoder_output,
             encoder_output_proj,
             encoder_padding_mask=None):
        context = self.attention(hidden, encoder_output, encoder_output_proj,
                                 encoder_padding_mask)
        step_input = layers.concat([step_input, context], axis=1)
        output, new_hidden = self.gru_cell(step_input, hidden)
        return output, new_hidden


def data_func(is_train=True):
    """data inputs and data loader"""
    src = fluid.data(name="src", shape=[None, None], dtype="int64")
    src_sequence_length = fluid.data(
        name="src_sequence_length", shape=[None], dtype="int64")
    inputs = [src, src_sequence_length]
    if is_train:
        trg = fluid.data(name="trg", shape=[None, None], dtype="int64")
        trg_sequence_length = fluid.data(
            name="trg_sequence_length", shape=[None], dtype="int64")
        label = fluid.data(name="label", shape=[None, None], dtype="int64")
        inputs += [trg, trg_sequence_length, label]
    loader = fluid.io.DataLoader.from_generator(
        feed_list=inputs, capacity=10, iterable=True, use_double_buffer=True)
    return inputs, loader


def encoder(src_embedding, src_sequence_length):
    """Encoder: Bidirectional GRU"""
    encoder_fwd_cell = layers.GRUCell(hidden_size=hidden_dim)
    encoder_fwd_output, fwd_state = layers.rnn(
        cell=encoder_fwd_cell,
        inputs=src_embedding,
        sequence_length=src_sequence_length,
        time_major=False,
        is_reverse=False)
    encoder_bwd_cell = layers.GRUCell(hidden_size=hidden_dim)
    encoder_bwd_output, bwd_state = layers.rnn(
        cell=encoder_bwd_cell,
        inputs=src_embedding,
        sequence_length=src_sequence_length,
        time_major=False,
        is_reverse=True)
    encoder_output = layers.concat(
        input=[encoder_fwd_output, encoder_bwd_output], axis=2)
    encoder_state = layers.concat(input=[fwd_state, bwd_state], axis=1)
    return encoder_output, encoder_state


def decoder(encoder_output,
            encoder_output_proj,
            encoder_state,
            encoder_padding_mask,
            trg=None,
            is_train=True):
    """Decoder: GRU with Attention"""
    decoder_cell = DecoderCell(hidden_size=decoder_size)
    decoder_initial_states = layers.fc(
        encoder_state, size=decoder_size, act="tanh")
    trg_embeder = lambda x: fluid.embedding(input=x,
                                            size=[target_dict_size, hidden_dim],
                                            dtype="float32",
                                            param_attr=fluid.ParamAttr(
                                                name="trg_emb_table"))
    output_layer = lambda x: layers.fc(x,
                                       size=target_dict_size,
                                       num_flatten_dims=len(x.shape) - 1,
                                       param_attr=fluid.ParamAttr(name=
                                                                  "output_w"))
    if is_train:
        decoder_output, _ = layers.rnn(
            cell=decoder_cell,
            inputs=trg_embeder(trg),
            initial_states=decoder_initial_states,
            time_major=False,
            encoder_output=encoder_output,
            encoder_output_proj=encoder_output_proj,
            encoder_padding_mask=encoder_padding_mask)
        decoder_output = output_layer(decoder_output)
    else:
        encoder_output = layers.BeamSearchDecoder.tile_beam_merge_with_batch(
            encoder_output, beam_size)
        encoder_output_proj = layers.BeamSearchDecoder.tile_beam_merge_with_batch(
            encoder_output_proj, beam_size)
        encoder_padding_mask = layers.BeamSearchDecoder.tile_beam_merge_with_batch(
            encoder_padding_mask, beam_size)
        beam_search_decoder = layers.BeamSearchDecoder(
            cell=decoder_cell,
            start_token=bos_id,
            end_token=eos_id,
            beam_size=beam_size,
            embedding_fn=trg_embeder,
            output_fn=output_layer)
        decoder_output, _ = layers.dynamic_decode(
            decoder=beam_search_decoder,
            inits=decoder_initial_states,
            max_step_num=max_length,
            output_time_major=False,
            encoder_output=encoder_output,
            encoder_output_proj=encoder_output_proj,
            encoder_padding_mask=encoder_padding_mask)

    return decoder_output


def model_func(inputs, is_train=True):
    src = inputs[0]
    src_sequence_length = inputs[1]
    # source embedding
    src_embeder = lambda x: fluid.embedding(
        input=x,
        size=[source_dict_size, hidden_dim],
        dtype="float32",
        param_attr=fluid.ParamAttr(name="src_emb_table"))
    src_embedding = src_embeder(src)

    # encoder
    encoder_output, encoder_state = encoder(src_embedding, src_sequence_length)

    encoder_output_proj = layers.fc(
        input=encoder_output,
        size=decoder_size,
        num_flatten_dims=2,
        bias_attr=False)
    src_mask = layers.sequence_mask(
        src_sequence_length, maxlen=layers.shape(src)[1], dtype="float32")
    encoder_padding_mask = (src_mask - 1.0) * 1e9

    trg = inputs[2] if is_train else None

    # decoder
    output = decoder(
        encoder_output=encoder_output,
        encoder_output_proj=encoder_output_proj,
        encoder_state=encoder_state,
        encoder_padding_mask=encoder_padding_mask,
        trg=trg,
        is_train=is_train)
    return output


def loss_func(logits, label, trg_sequence_length):
    probs = layers.softmax(logits)
    loss = layers.cross_entropy(input=probs, label=label)
    trg_mask = layers.sequence_mask(
        trg_sequence_length, maxlen=layers.shape(logits)[1], dtype="float32")
    avg_cost = layers.reduce_sum(loss * trg_mask) / layers.reduce_sum(trg_mask)
    return avg_cost


def optimizer_func():
    fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByGlobalNorm(
        clip_norm=5.0))
    lr_decay = fluid.layers.learning_rate_scheduler.noam_decay(hidden_dim,
                                                               1000)
    return fluid.optimizer.Adam(
        learning_rate=lr_decay,
        regularization=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=1e-4))


def inputs_generator(batch_size, pad_id, is_train=True):
    data_generator = fluid.io.shuffle(
        paddle.dataset.wmt16.train(source_dict_size, target_dict_size),
        buf_size=10000) if is_train else paddle.dataset.wmt16.test(
            source_dict_size, target_dict_size)
    batch_generator = fluid.io.batch(data_generator, batch_size=batch_size)

    def _pad_batch_data(insts, pad_id):
        seq_lengths = np.array(list(map(len, insts)), dtype="int64")
        max_len = max(seq_lengths)
        pad_data = np.array(
            [inst + [pad_id] * (max_len - len(inst)) for inst in insts],
            dtype="int64")
        return pad_data, seq_lengths

    def _generator():
        for batch in batch_generator():
            batch_src = [ins[0] for ins in batch]
            src_data, src_lengths = _pad_batch_data(batch_src, pad_id)
            inputs = [src_data, src_lengths]
            if is_train:
                batch_trg = [ins[1] for ins in batch]
                trg_data, trg_lengths = _pad_batch_data(batch_trg, pad_id)
                batch_lbl = [ins[2] for ins in batch]
                lbl_data, _ = _pad_batch_data(batch_lbl, pad_id)
                inputs += [trg_data, trg_lengths, lbl_data]
            yield inputs

    return _generator


def train(use_cuda):
    # define program
    train_prog = fluid.Program()
    startup_prog = fluid.Program()
    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            # For training:
            # inputs = [src, src_sequence_length, trg, trg_sequence_length, label]
            inputs, loader = data_func(is_train=True)
            logits = model_func(inputs, is_train=True)
            loss = loss_func(logits, inputs[-1], inputs[-2])
            optimizer = optimizer_func()
            optimizer.minimize(loss)

    # define data source
    places = fluid.cuda_places() if use_cuda else fluid.cpu_places()
    loader.set_batch_generator(
        inputs_generator(batch_size, eos_id, is_train=True), places=places)

    exe = fluid.Executor(places[0])
    exe.run(startup_prog)
    prog = fluid.CompiledProgram(train_prog).with_data_parallel(
        loss_name=loss.name)

    EPOCH_NUM = 20
    for pass_id in six.moves.xrange(EPOCH_NUM):
        batch_id = 0
        for data in loader():
            loss_val = exe.run(prog, feed=data, fetch_list=[loss])[0]
            print('pass_id: %d, batch_id: %d, loss: %f' %
                  (pass_id, batch_id, loss_val))
            batch_id += 1
        fluid.io.save_params(exe, model_save_dir, main_program=train_prog)


def infer(use_cuda):
    # define program
    infer_prog = fluid.Program()
    startup_prog = fluid.Program()
    with fluid.program_guard(infer_prog, startup_prog):
        with fluid.unique_name.guard():
            inputs, loader = data_func(is_train=False)
            predict_seqs = model_func(inputs, is_train=False)

    # define data source
    places = fluid.cuda_places() if use_cuda else fluid.cpu_places()
    loader.set_batch_generator(
        inputs_generator(batch_size, eos_id, is_train=False), places=places)
    src_idx2word = paddle.dataset.wmt16.get_dict(
        "en", source_dict_size, reverse=True)
    trg_idx2word = paddle.dataset.wmt16.get_dict(
        "de", target_dict_size, reverse=True)

    exe = fluid.Executor(places[0])
    exe.run(startup_prog)
    fluid.io.load_params(exe, model_save_dir, main_program=infer_prog)
    prog = fluid.CompiledProgram(infer_prog).with_data_parallel()

    for data in loader():
        seq_ids = exe.run(prog, feed=data, fetch_list=[predict_seqs])[0]
        for ins_idx in range(seq_ids.shape[0]):
            print("Original sentence:")
            src_seqs = np.array(data[0]["src"])
            print(" ".join([
                src_idx2word[idx] for idx in src_seqs[ins_idx][1:]
                if idx != eos_id
            ]))
            print("Translated sentence:")
            for beam_idx in range(beam_size):
                seq = [
                    trg_idx2word[idx] for idx in seq_ids[ins_idx, :, beam_idx]
                    if idx != eos_id
                ]
                print(" ".join(seq).encode("utf8"))


def main(use_cuda):
    train(use_cuda)
    infer(use_cuda)


if __name__ == '__main__':
    use_cuda = False  # set to True if training with GPU
    main(use_cuda)