.. _cn_api_fluid_initializer_BilinearInitializer: BilinearInitializer ------------------------------- .. py:class:: paddle.fluid.initializer.BilinearInitializer 该初始化函数用于转置卷积函数,进行上采样。用户通过任意整型因子放大shape为(B,C,H,W)的特征图。用法如下: **代码示例**: .. code-block:: python import paddle.fluid as fluid factor = 2 C = 2 w_attr = fluid.initializer.ParamAttr( learning_rate=0., regularizer=fluid.regularizer.L2Decay(0.), initializer=fluid.initializer.Bilinear()) x = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32") conv_up = fluid.layers.conv2d_transpose( input=x, num_filters=C, output_size=None, filter_size=2 * factor - factor % 2, padding=int(math.ceil((factor - 1) / 2.)), stride=factor, groups=C, param_attr=w_attr, bias_attr=False) num_filters = C和groups = C 表示这是按通道转置的卷积函数。滤波器shape为(C,1,K,K),K为filter_size。该初始化函数为滤波器的每个通道设置(K,K)插值核。输出特征图的最终输出shape为(B,C,factor*H,factor*W)。注意学习率和权重衰减设为0,以便在训练过程中双线性插值的系数值保持不变