BilinearInitializer_cn.rst 1.6 KB
Newer Older
H
Hao Wang 已提交
1 2 3 4 5
.. _cn_api_fluid_initializer_BilinearInitializer:

BilinearInitializer
-------------------------------

6
.. py:class:: paddle.fluid.initializer.BilinearInitializer())
H
Hao Wang 已提交
7

8 9 10 11 12
该接口为参数初始化函数,用于转置卷积函数中,对输入进行上采样。用户通过任意整型因子放大shape为(B,C,H,W)的特征图。

返回:对象

用法如下:
H
Hao Wang 已提交
13 14 15 16 17 18

**代码示例**:

.. code-block:: python

    import paddle.fluid as fluid
19
    import math
H
Hao Wang 已提交
20 21
    factor = 2
    C = 2
22 23
    H = W = 32
    w_attr = fluid.ParamAttr(
H
Hao Wang 已提交
24 25
        learning_rate=0.,
        regularizer=fluid.regularizer.L2Decay(0.),
26 27
        initializer=fluid.initializer.BilinearInitializer())
    x = fluid.layers.data(name="data", shape=[4, H, W],
H
Hao Wang 已提交
28 29 30 31 32 33 34 35 36 37 38 39
                          dtype="float32")
    conv_up = fluid.layers.conv2d_transpose(
        input=x,
        num_filters=C,
        output_size=None,
        filter_size=2 * factor - factor % 2,
        padding=int(math.ceil((factor - 1) / 2.)),
        stride=factor,
        groups=C,
        param_attr=w_attr,
        bias_attr=False)

40
上述代码实现的是将输入x(shape=[-1, 4, H, W])经过转置卷积得到shape=[-1, C, H*factor, W*factor]的输出,num_filters = C和groups = C 表示这是按通道转置的卷积函数,输出通道为C,转置卷积的groups为C。滤波器shape为(C,1,K,K),K为filter_size。该初始化函数为滤波器的每个通道设置(K,K)插值核。输出特征图的最终输出shape为(B,C,factor*H,factor*W)。注意学习率和权重衰减设为0,以便在训练过程中双线性插值的系数值保持不变
H
Hao Wang 已提交
41 42 43 44