inplace_abn_cn.rst 4.1 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5
.. _cn_api_fluid_layers_inplace_abn:

inplace_abn
-------------------------------

6
:api_attr: 声明式编程(静态图)专用API
K
Kaipeng Deng 已提交
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

.. py:function:: paddle.fluid.layers.inplace_abn(input, act=None, is_test=False, momentum=0.9, epsilon=1e-05, param_attr=None, bias_attr=None, data_layout='NCHW', name=None, moving_mean_name=None, moving_variance_name=None, do_model_average_for_mean_and_var=False, use_global_stats=False, act_alpha=1.0)

就地批正则化化激活层(Inplace Activation Batch Normalization Layer)

此层使用就地内存计算批处理正则化和激活来实现节省内存,有关批量正则化计算,请参见 ``fluid.layers.batch_norm`` ,有关就地激活批正则化化的计算,请参考 `In-Place Activated BatchNorm for Memory-Optimized Training of DNNs <https://arxiv.org/abs/1712.02616>`_。

参数:
    - **input** (Variable) - inplace_abn算子的输入特征,是一个Variable类型,输入维度可以是 2, 3, 4, 5。数据类型:flaot16, float32, float64。
    - **act** (string)- 激活函数类型,可以是leaky_realu、relu、prelu等。默认:None。
    - **is_test** (bool) - 指示它是否在测试阶段,非训练阶段使用训练过程中统计到的全局均值和全局方差。默认:False。
    - **momentum** (float|Variable)- 此值用于计算 moving_mean 和 moving_var,是一个float类型或者一个shape为[1],数据类型为float32的Variable类型。更新公式为:  :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)` , :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)` , 默认:0.9。
    - **epsilon** (float)- 加在分母上为了数值稳定的值。默认:1e-5。
    - **param_attr** (ParamAttr|None) :指定权重参数属性的对象。默认值为None,表示使用默认的权重参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。inplace_abn算子默认的权重初始化是1.0。
    - **bias_attr** (ParamAttr|None)- 指定偏置参数属性的对象。默认值为None,表示使用默认的偏置参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。inplace_abn算子默认的偏置初始化是0.0。
    - **data_layout** (string) - 指定输入的数据格式,输出的数据格式将与输入保持一致,可以是"NCHW"和"NHWC"。N是批尺寸,C是通道数,H是特征高度,W是特征宽度。默认值:"NCHW"。
    - **name** (str|None) – 具体用法请参见 :ref:`cn_api_guide_Name` ,一般无需设置,默认值为None。
    - **moving_mean_name** (string)- moving_mean的名称,存储全局均值。如果将其设置为None, ``inplace_abn`` 将随机命名全局均值;否则, ``inplace_abn`` 将命名全局均值为 ``moving_mean_name`` 。默认:None。
    - **moving_variance_name** (string)- moving_variance的名称,存储全局变量。如果将其设置为None, ``inplace_abn`` 将随机命名全局方差;否则, ``inplace_abn`` 将命名全局方差为 ``moving_variance_name`` 。默认:None。
    - **do_model_average_for_mean_and_var** (bool,默认False)- 是否为mean和variance做模型均值。
    - **use_global_stats** (bool) – 是否使用全局均值和方差。 在预测或测试模式下,将use_global_stats设置为true或将is_test设置为true,并且行为是等效的。 在训练模式中,当设置use_global_stats为True时,在训练期间也使用全局均值和方差。默认:False。
    - **act_alpha** (float) – 当 ``act`` 参数为None、leaky-relu、elu时,会使用就地批正则化激活算法,可通过此参数给定leaky-relu、elu的 ``alpha`` 值。默认:1.0。


返回: 维度和输入相同的Tensor,在输入中运用批正则后的结果。

返回类型:Variable

**代码示例**:

.. code-block:: python

		import paddle.fluid as fluid
		x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
		hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
		hidden2 = fluid.layers.inplace_abn(input=hidden1)
		hidden3 = fluid.layers.inplace_abn(input=hidden2, act='leaky_relu', act_alpha=0.2)