conv2d_cn.rst 4.5 KB
Newer Older
H
Hao Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
.. _cn_api_fluid_layers_conv2d:

conv2d
-------------------------------

.. py:function:: paddle.fluid.layers.conv2d(input, num_filters, filter_size, stride=1, padding=0, dilation=1, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None, name=None)

卷积二维层(convolution2D layer)根据输入、滤波器(filter)、步长(stride)、填充(padding)、dilations、一组参数计算输出。输入和输出是NCHW格式,N是批尺寸,C是通道数,H是特征高度,W是特征宽度。滤波器是MCHW格式,M是输出图像通道数,C是输入图像通道数,H是滤波器高度,W是滤波器宽度。如果组数大于1,C等于输入图像通道数除以组数的结果。详情请参考UFLDL's : `卷积 <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ 。如果提供了bias属性和激活函数类型,bias会添加到卷积(convolution)的结果中相应的激活函数会作用在最终结果上。

对每个输入X,有等式:

.. math::

    Out = \sigma \left ( W * X + b \right )

其中:
    - :math:`X` :输入值,NCHW格式的张量(Tensor)
    - :math:`W` :滤波器值,MCHW格式的张量(Tensor)
    - :math:`*` : 卷积操作
    - :math:`b` :Bias值,二维张量(Tensor),shape为 ``[M,1]``
    - :math:`\sigma` :激活函数
    - :math:`Out` :输出值,``Out`` 和 ``X`` 的shape可能不同

**示例**

- 输入:

  输入shape::math:`( N,C_{in},H_{in},W_{in} )`

  滤波器shape: :math:`( C_{out},C_{in},H_{f},W_{f} )`

- 输出:

  输出shape: :math:`( N,C_{out},H_{out},W_{out} )`

其中

.. math::

    H_{out} = \frac{\left ( H_{in}+2*paddings[0]-\left ( dilations[0]*\left ( H_{f}-1 \right )+1 \right ) \right )}{strides[0]}+1

    W_{out} = \frac{\left ( W_{in}+2*paddings[1]-\left ( dilations[1]*\left ( W_{f}-1 \right )+1 \right ) \right )}{strides[1]}+1

参数:
    - **input** (Variable) - 格式为[N,C,H,W]格式的输入图像
Z
zq19 已提交
46
    - **num_filters** (int) - 滤波器数。和输出图像通道相同
47
    - **filter_size** (int|tuple|None) - 滤波器大小。如果filter_size是一个元组,则必须包含两个整型数,(filter_size_H,filter_size_W)。否则,滤波器为square
H
Hao Wang 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    - **stride** (int|tuple) - 步长(stride)大小。如果步长(stride)为元组,则必须包含两个整型数,(stride_H,stride_W)。否则,stride_H = stride_W = stride。默认:stride = 1
    - **padding** (int|tuple) - 填充(padding)大小。如果填充(padding)为元组,则必须包含两个整型数,(padding_H,padding_W)。否则,padding_H = padding_W = padding。默认:padding = 0
    - **dilation** (int|tuple) - 膨胀(dilation)大小。如果膨胀(dialation)为元组,则必须包含两个整型数,(dilation_H,dilation_W)。否则,dilation_H = dilation_W = dilation。默认:dilation = 1
    - **groups** (int) - 卷积二维层(Conv2D Layer)的组数。根据Alex Krizhevsky的深度卷积神经网络(CNN)论文中的成组卷积:当group=2,滤波器的前一半仅和输入通道的前一半连接。滤波器的后一半仅和输入通道的后一半连接。默认:groups = 1
    - **param_attr** (ParamAttr|None) - conv2d的可学习参数/权重的参数属性。如果设为None或者ParamAttr的一个属性,conv2d创建ParamAttr为param_attr。如果param_attr的初始化函数未设置,参数则初始化为 :math:`Normal(0.0,std)` ,并且std为 :math:`\frac{2.0}{filter\_elem\_num}^{0.5}` 。默认为None
    - **bias_attr** (ParamAttr|bool|None) - conv2d bias的参数属性。如果设为False,则没有bias加到输出。如果设为None或者ParamAttr的一个属性,conv2d创建ParamAttr为bias_attr。如果bias_attr的初始化函数未设置,bias初始化为0.默认为None
    - **use_cudnn** (bool) - 是否用cudnn核,仅当下载cudnn库才有效。默认:True
    - **act** (str) - 激活函数类型,如果设为None,则未添加激活函数。默认:None
    - **name** (str|None) - 该层名称(可选)。若设为None,则自动为该层命名。

返回:张量,存储卷积和非线性激活结果

返回类型:变量(Variable)

抛出异常:
  - ``ValueError`` - 如果输入shape和filter_size,stride,padding和group不匹配。

**代码示例**:

.. code-block:: python

    import paddle.fluid as fluid
    data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
    conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")