**[ERNIE-GEN](https://arxiv.org/abs/2001.11314.pdf) is a multi-flow language generation framework for both pre-training and fine-tuning.** We propose a novel **span-by-span generation** pre-training task to enable the model to **generate a semantically-complete span** at each step rather than a word, in light of the fact that entities, phrases in human writing are organized in a coherent manner. An **infilling generation mechanism** and a **noise-aware generation method** are incorporated into both pre-training and fine-tuning to alleviate **the problem of exposure bias**. In the pre-training phase, ERNIE-GEN adopts a **multi-granularity target fragments sampling** strategy to force decoder to rely more on the encoder representations other than the previous generated words to enhancing the correlation between encoder and decoder.
**[ERNIE-GEN](https://arxiv.org/abs/2001.11314.pdf) is a multi-flow language generation framework for both pre-training and fine-tuning.** We propose a novel **span-by-span generation** pre-training task to enable the model to **generate a semantically-complete span** at each step rather than a word, in light of the fact that entities, phrases in human writing are organized in a coherent manner. An **infilling generation mechanism** and a **noise-aware generation method** are incorporated into both pre-training and fine-tuning to alleviate **the problem of exposure bias**. In the pre-training phase, ERNIE-GEN adopts a **multi-granularity target fragments sampling** strategy to force decoder to rely more on the encoder representations other than the previous generated words to enhancing the correlation between encoder and decoder.