未验证 提交 2225c222 编写于 作者: Z zhanghan 提交者: GitHub

Merge pull request #705 from PROoshio/repro

Repro
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from __future__ import division
import os
import numpy as np
import types
import gzip
import logging
import re
import six
import collections
import tokenization
import paddle
import paddle.fluid as fluid
from batching import prepare_batch_data
class ErnieDataReader(object):
def __init__(self,
filelist,
vocab_path,
batch_size=4096,
in_tokens=True,
max_seq_len=512,
shuffle_files=True,
random_seed=1,
epoch=100,
voc_size=0,
is_test=False,
generate_neg_sample=False,
hack_old_trainset=False):
self.vocab = self.load_vocab(vocab_path)
self.filelist = filelist
self.batch_size = batch_size
self.in_tokens = in_tokens
self.random_seed = random_seed
self.shuffle_files = shuffle_files
self.epoch = epoch
self.current_epoch = 0
self.current_file_index = 0
self.total_file = 0
self.current_file = None
self.voc_size = voc_size
self.max_seq_len = max_seq_len
self.pad_id = self.vocab["[PAD]"]
self.cls_id = self.vocab["[CLS]"]
self.sep_id = self.vocab["[SEP]"]
self.mask_id = self.vocab["[MASK]"]
self.input_slots = 5
self.is_test = is_test
self.generate_neg_sample = generate_neg_sample
self.trainer_id = 0
self.trainer_nums = 1
self.files = open(filelist).readlines()
self.total_file = len(self.files)
if self.is_test:
self.epoch = 1
self.shuffle_files = False
self.global_rng = np.random.RandomState(random_seed)
if self.shuffle_files:
if os.getenv("PADDLE_TRAINER_ID"):
self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
if os.getenv("PADDLE_NODES_NUM"):
self.trainer_nums = int(os.getenv("PADDLE_TRAINERS_NUM"))
#renew total_file
self.total_file = len(self.files) // self.trainer_nums * self.trainer_nums
tmp_files = []
for each in range(epoch):
each_files = [i for i in self.files]
self.global_rng.shuffle(each_files)
tmp_files += each_files
self.files = tmp_files
#renew epochs
self.epoch = len(self.files) // self.total_file * self.total_file
assert self.total_file > 0, \
"[Error] data_dir is empty or less than %d" % self.trainer_nums
if self.in_tokens:
assert self.batch_size > 100, "Current batch size means total token's number, \
it should not be set to too small number."
if hack_old_trainset:
self.input_slots = 4
def get_progress(self):
"""return current progress of traning data
"""
return self.current_epoch, self.current_file_index, self.total_file, self.current_file, self.mask_type
def parse_line(self, line, max_seq_len=512):
""" parse one line to token_ids, sentence_ids, pos_ids, label
"""
line = line.strip().split(";")
assert len(line) == self.input_slots, \
"One sample must have %d fields!" % self.input_slots
if self.input_slots == 4:
(token_ids, sent_ids, pos_ids, label) = line
token_ids = [int(token) for token in token_ids.split(" ")]
sent_ids = [int(token) for token in sent_ids.split(" ")]
pos_ids = [int(token) for token in pos_ids.split(" ")]
#fake seg_labels
seg_labels = [0, ] * len(sent_ids)
id_sent_b = sent_ids[0] + 1
len_sent_a = sent_ids.index(id_sent_b)
#sent_a, sent_b
seg_labels[0] = seg_labels[len_sent_a - 1] = seg_labels[-1] = -1
if self.input_slots == 5:
(token_ids, sent_ids, pos_ids, seg_labels, label) = line
token_ids = [int(token) for token in token_ids.split(" ")]
sent_ids = [int(token) for token in sent_ids.split(" ")]
pos_ids = [int(token) for token in pos_ids.split(" ")]
seg_labels = [int(seg_label) for seg_label in seg_labels.split(" ")]
assert len(token_ids) == len(sent_ids) == len(pos_ids) == len(
seg_labels
), "[Must be true]len(token_ids) == len(sent_ids) == len(pos_ids) == len(seg_labels)"
label = int(label)
if len(token_ids) > max_seq_len:
return None
return [token_ids, sent_ids, pos_ids, label, seg_labels]
def read_file(self, file):
assert file.endswith('.gz'), "[ERROR] %s is not a gzip file" % file
with gzip.open(file, "rb") as f:
for line in f:
parsed_line = self.parse_line(
line, max_seq_len=self.max_seq_len)
if parsed_line is None:
continue
yield parsed_line
def convert_to_unicode(self, text):
"""Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
if six.PY3:
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
elif six.PY2:
if isinstance(text, str):
return text.decode("utf-8", "ignore")
elif isinstance(text, unicode):
return text
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
else:
raise ValueError("Not running on Python2 or Python 3?")
def load_vocab(self, vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
fin = open(vocab_file)
for num, line in enumerate(fin):
items = self.convert_to_unicode(line.strip()).split("\t")
if len(items) > 2:
break
token = items[0]
index = items[1] if len(items) == 2 else num
token = token.strip()
vocab[token] = int(index)
return vocab
def random_pair_neg_samples(self, pos_samples):
""" randomly generate negtive samples using pos_samples
Args:
pos_samples: list of positive samples
Returns:
neg_samples: list of negtive samples
"""
np.random.shuffle(pos_samples)
num_sample = len(pos_samples)
neg_samples = []
miss_num = 0
def split_sent(sample, max_len, sep_id):
token_seq, type_seq, pos_seq, label, seg_labels = sample
sep_index = token_seq.index(sep_id)
left_len = sep_index - 1
if left_len <= max_len:
return (token_seq[1:sep_index], seg_labels[1:sep_index])
else:
return [
token_seq[sep_index + 1:-1], seg_labels[sep_index + 1:-1]
]
for i in range(num_sample):
pair_index = (i + 1) % num_sample
left_tokens, left_seg_labels = split_sent(
pos_samples[i], (self.max_seq_len - 3) // 2, self.sep_id)
right_tokens, right_seg_labels = split_sent(
pos_samples[pair_index],
self.max_seq_len - 3 - len(left_tokens), self.sep_id)
token_seq = [self.cls_id] + left_tokens + [self.sep_id] + \
right_tokens + [self.sep_id]
if len(token_seq) > self.max_seq_len:
miss_num += 1
continue
type_seq = [0] * (len(left_tokens) + 2) + [1] * (len(right_tokens) +
1)
pos_seq = range(len(token_seq))
seg_label_seq = [-1] + left_seg_labels + [-1] + right_seg_labels + [
-1
]
assert len(token_seq) == len(type_seq) == len(pos_seq) == len(seg_label_seq), \
"[ERROR]len(src_id) == lne(sent_id) == len(pos_id) must be True"
neg_samples.append([token_seq, type_seq, pos_seq, 0, seg_label_seq])
return neg_samples, miss_num
def mixin_negtive_samples(self, pos_sample_generator, buffer=1000):
""" 1. generate negtive samples by randomly group sentence_1 and sentence_2 of positive samples
2. combine negtive samples and positive samples
Args:
pos_sample_generator: a generator producing a parsed positive sample, which is a list: [token_ids, sent_ids, pos_ids, 1]
Returns:
sample: one sample from shuffled positive samples and negtive samples
"""
pos_samples = []
num_total_miss = 0
pos_sample_num = 0
try:
while True:
while len(pos_samples) < buffer:
pos_sample = next(pos_sample_generator)
label = pos_sample[3]
assert label == 1, "positive sample's label must be 1"
pos_samples.append(pos_sample)
pos_sample_num += 1
neg_samples, miss_num = self.random_pair_neg_samples(
pos_samples)
num_total_miss += miss_num
samples = pos_samples + neg_samples
pos_samples = []
np.random.shuffle(samples)
for sample in samples:
yield sample
except StopIteration:
print("stopiteration: reach end of file")
if len(pos_samples) == 1:
yield pos_samples[0]
elif len(pos_samples) == 0:
yield None
else:
neg_samples, miss_num = self.random_pair_neg_samples(
pos_samples)
num_total_miss += miss_num
samples = pos_samples + neg_samples
pos_samples = []
np.random.shuffle(samples)
for sample in samples:
yield sample
print("miss_num:%d\tideal_total_sample_num:%d\tmiss_rate:%f" %
(num_total_miss, pos_sample_num * 2,
num_total_miss / (pos_sample_num * 2)))
def shuffle_samples(self, sample_generator, buffer=1000):
samples = []
try:
while True:
while len(samples) < buffer:
sample = next(sample_generator)
samples.append(sample)
np.random.shuffle(samples)
for sample in samples:
yield sample
samples = []
except StopIteration:
print("stopiteration: reach end of file")
if len(samples) == 0:
yield None
else:
np.random.shuffle(samples)
for sample in samples:
yield sample
def data_generator(self):
"""
data_generator
"""
def wrapper():
def reader():
for epoch in range(self.epoch):
self.current_epoch = epoch + 1
files = self.files
#during training, data are sliced by trainers
if self.shuffle_files:
start = epoch * self.total_file
end = start + self.total_file
files = [file_ for index, file_ in enumerate(self.files[start:end]) \
if index % self.trainer_nums == self.trainer_id]
for index, file_ in enumerate(files):
file_, mask_word_prob = file_.strip().split("\t")
mask_word = (np.random.random() < float(mask_word_prob))
self.current_file_index = (index + 1) * self.trainer_nums
self.current_file = file_
if mask_word:
self.mask_type = "mask_word"
else:
self.mask_type = "mask_char"
sample_generator = self.read_file(file_)
if not self.is_test:
if self.generate_neg_sample:
sample_generator = self.mixin_negtive_samples(
sample_generator)
else:
#shuffle buffered sample
sample_generator = self.shuffle_samples(
sample_generator)
for sample in sample_generator:
if sample is None:
continue
sample.append(mask_word)
yield sample
def batch_reader(reader, batch_size):
batch, total_token_num, max_len = [], 0, 0
for parsed_line in reader():
token_ids, sent_ids, pos_ids, label, seg_labels, mask_word = parsed_line
max_len = max(max_len, len(token_ids))
if self.in_tokens:
to_append = (len(batch) + 1) * max_len <= batch_size
else:
to_append = len(batch) < batch_size
if to_append:
batch.append(parsed_line)
total_token_num += len(token_ids)
else:
yield batch, total_token_num
batch, total_token_num, max_len = [parsed_line], len(
token_ids), len(token_ids)
if len(batch) > 0:
yield batch, total_token_num
for batch_data, total_token_num in batch_reader(reader,
self.batch_size):
yield prepare_batch_data(
batch_data,
total_token_num,
voc_size=self.voc_size,
pad_id=self.pad_id,
cls_id=self.cls_id,
sep_id=self.sep_id,
mask_id=self.mask_id,
return_input_mask=True,
return_max_len=False,
return_num_token=False)
return wrapper
if __name__ == "__main__":
pass
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册