finetune_batching.py 11.5 KB
Newer Older
T
tangjiji 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
#    Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");                                                      
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#    http://www.apache.org/licenses/LICENSE-2.0
        
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

""" prepare data format for finetuning tasks """

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

from six.moves import xrange


def prepare_batch_data(batch_records, num_choice, pad_id, task_index, task_num):
    """
    prepare batch data for finetuning tasks
    """
    batch_input_ids = []
    batch_input_pos = []
    batch_seg_ids = []
    batch_input_masks = []
    num_sample = len(batch_records)
    batch_lens = [record["input_lens"] for record in batch_records]
    batch_labels = [record["target"] for record in batch_records]
    binary_labels = np.zeros([num_choice * num_sample, 1], dtype='float32')
    for i, l in enumerate(batch_labels):
        binary_labels[i * num_choice + l] = 1.0
    labels = np.array(batch_labels).astype("int64").reshape([-1, 1])
    image_features = [record["features"] for record in batch_records]
    image_boxes = [record["boxes"] for record in batch_records]
    batch_anno_ids = np.array([record["anno_id"] for record in batch_records]).astype("int64").reshape([-1, 1])
    max_len = max([max(lens) for lens in batch_lens])
    for i in range(len(batch_records)):
        batch_input_ids.append([inst + list([pad_id] * (max_len - len(inst))) \
            for inst in batch_records[i]["input_ids"]])
        batch_input_pos.append([inst + list([pad_id] * (max_len - len(inst))) \
            for inst in batch_records[i]["input_pos"]])
        batch_seg_ids.append([inst + list([pad_id] * (max_len - len(inst)))   \
            for inst in batch_records[i]["segment_ids"]])
        batch_input_masks.append([[1] * len(inst) + [0] * (max_len - len(inst))    \
            for inst in batch_records[i]["input_ids"]])

    image_embedding, image_mask = pad_feature_data(image_features, return_mask=True)
    image_loc = pad_feature_data(image_boxes)
    src_ids = np.array(batch_input_ids).astype("int64").reshape([num_choice * num_sample, max_len, 1])
    src_pos = np.array(batch_input_pos).astype("int64").reshape([num_choice * num_sample, max_len, 1])
    src_seg = np.array(batch_seg_ids).astype("int64").reshape([num_choice * num_sample, max_len, 1])
    src_masks = np.array(batch_input_masks).astype("float32").reshape([num_choice * num_sample, max_len, 1])
    batch, seq_len, fea_len = image_embedding.shape
    image_embedding = np.tile(np.expand_dims(image_embedding, axis=1),    \
        (1, num_choice, 1, 1)).reshape([num_choice * batch, seq_len, fea_len])
    image_mask = np.tile(np.expand_dims(image_mask, axis=1),        \
        (1, num_choice, 1, 1)).reshape([num_choice * batch, seq_len, 1])
    image_loc = np.tile(np.expand_dims(image_loc, axis=1),     \
        (1, num_choice, 1, 1)).reshape([num_choice * batch, seq_len, 5])
T
tangjiji 已提交
66
    return_list = [src_ids, src_pos, src_seg, src_masks, \
T
tangjiji 已提交
67 68 69 70 71 72 73 74 75 76 77
        image_embedding, image_loc, image_mask, labels, batch_anno_ids]
    return_list.append(np.array([task_index]).astype('int64'))
    return_list.append(binary_labels)
    for i in xrange(task_num):
        if i == task_index:
            return_list.append(np.array([1.0]).astype("float32"))
        else:
            return_list.append(np.array([0.0]).astype("float32"))
    return return_list


T
tangjiji 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
def prepare_vqa_batch_data(insts,
                       total_token_num,
                       task_index,
                       task_num,
                       voc_size=0,
                       pad_id=None,
                       cls_id=None,
                       sep_id=None,
                       mask_id=None,
                       return_input_mask=True,
                       return_max_len=True,
                       return_num_token=False):
    """
    prepare batch data for vqa tasks
    """
    batch_src_ids = [inst["token_ids"] for inst in insts]
    batch_sent_ids = [inst["sent_ids"] for inst in insts]
    batch_pos_ids = [inst["pos_ids"] for inst in insts]
    batch_image_embedding = [inst["image_embeddings"] for inst in insts]
    batch_image_loc = [inst["image_loc"] for inst in insts]
    batch_weight_label = [inst["weight_labels"] for inst in insts]
    q_ids = np.array([inst["question_id"] for inst in insts])

    #pad and trans to numpy array
    src_id, self_input_mask, seq_lens = pad_batch_data(
        batch_src_ids, pad_idx=pad_id, return_input_mask=True, return_seq_lens = True)
    pos_id = pad_batch_data(batch_pos_ids, pad_idx=pad_id)
    sent_id = pad_batch_data(batch_sent_ids, pad_idx=pad_id)
    weight_labels = np.array(batch_weight_label).astype("float32")
    #image_embedding_ori = copy.deepcopy(batch_image_embedding)
    image_embedding, image_mask = pad_feature_data(batch_image_embedding, return_mask = True)
    #image_embedding_ori = pad_feature_data(image_embedding_ori)
    image_loc = pad_feature_data(batch_image_loc)

    return_list = [
        src_id, pos_id, sent_id, self_input_mask,  \
            image_embedding, image_loc, image_mask, weight_labels, q_ids
    ]
    return return_list


def prepare_flickr_data(insts,
                       total_token_num,
                       task_index,
                       task_num,
                       voc_size=0,
                       pad_id=None,
                       cls_id=None,
                       sep_id=None,
                       mask_id=None,
                       outs=4,
                       return_input_mask=True,
                       return_max_len=True,
                       return_num_token=False):
    """
    prepare flickr data for finetuning tasks
    """
    if outs > 1:
        batch_src_ids = [inst["token_ids"][out] for inst in insts for out in range(outs)]
        batch_sent_ids = [inst["sent_ids"][out] for inst in insts for out in range(outs)]
        batch_pos_ids = [inst["pos_ids"][out] for inst in insts for out in range(outs)]
        batch_image_embedding = [inst["image_embeddings"][out] for inst in insts for out in range(outs)]
        batch_image_loc = [inst["image_loc"][out] for inst in insts for out in range(outs)]
    else:
        batch_src_ids = [inst["token_ids"] for inst in insts]
        batch_sent_ids = [inst["sent_ids"] for inst in insts]
        batch_pos_ids = [inst["pos_ids"] for inst in insts]
        batch_image_embedding = [inst["image_embeddings"] for inst in insts ]
        batch_image_loc = [inst["image_loc"] for inst in insts ]
    batch_ids = [inst["ids"] for inst in insts for out in range(outs)]
    batch_size = int(len(batch_src_ids) / outs)
    label = np.array([[0] for i in range(batch_size)], dtype = "int64")

    src_id, self_input_mask, seq_lens = pad_batch_data(
        batch_src_ids, pad_idx=pad_id, return_input_mask=True, return_seq_lens = True)
    pos_id = pad_batch_data(batch_pos_ids, pad_idx=pad_id)
    sent_id = pad_batch_data(batch_sent_ids, pad_idx=pad_id)
    image_embeddings, image_mask = pad_feature_data(batch_image_embedding, return_mask = True)
    image_loc = pad_feature_data(batch_image_loc)
    ids = np.array(batch_ids, dtype = "int64")

    return_list = [
        src_id, pos_id, sent_id, self_input_mask, image_embeddings, image_loc, image_mask, label, ids]
    
    return return_list


def prepare_refcoco_plus_batch_data(insts,
                       total_token_num,
                       task_index,
                       task_num,
                       voc_size=0,
                       pad_id=None,
                       return_input_mask=True,
                       return_max_len=True,
                       return_num_token=False):
    """
    prepare batch data for refcoco_plus tasks
    """
    batch_src_ids = [inst["token_ids"] for inst in insts]
    batch_sent_ids = [inst["sent_ids"] for inst in insts]
    batch_pos_ids = [inst["pos_ids"] for inst in insts]
    batch_image_embedding = [inst["image_embeddings"] for inst in insts]
    batch_image_loc = [inst["image_loc"] for inst in insts]
    batch_image_label = [inst["label"] for inst in insts]
    add_items = np.array([inst["add_item"] for inst in insts], dtype="float32")

    src_id, self_input_mask, seq_lens = pad_batch_data(
        batch_src_ids, pad_idx=pad_id, return_input_mask=True, return_seq_lens = True)
    pos_id = pad_batch_data(batch_pos_ids, pad_idx=pad_id)
    sent_id = pad_batch_data(batch_sent_ids, pad_idx=pad_id)
    image_embedding, image_mask = pad_feature_data(batch_image_embedding, return_mask = True)
    image_loc = pad_feature_data(batch_image_loc)
    image_label = pad_feature_data(batch_image_label)

    return_list = [
        src_id, pos_id, sent_id, self_input_mask, seq_lens,  \
            image_embedding, image_loc, image_mask, image_label, add_items
    ]
    return return_list


def pad_batch_data(insts,
                   pad_idx=0,
                   return_pos=False,
                   return_input_mask=False,
                   return_max_len=False,
                   return_num_token=False,
                   return_seq_lens=False):
    """
    Pad the instances to the max sequence length in batch, and generate the
    corresponding position data and attention bias.
    """
    return_list = []
    max_len = max(len(inst) for inst in insts)
    # Any token included in dict can be used to pad, since the paddings' loss
    # will be masked out by weights and make no effect on parameter gradients.

    inst_data = np.array(
        [inst + list([pad_idx] * (max_len - len(inst))) for inst in insts])
    return_list += [inst_data.astype("int64").reshape([-1, max_len, 1])]

    # position data
    if return_pos:
        inst_pos = np.array([
            list(range(0, len(inst))) + [pad_idx] * (max_len - len(inst))
            for inst in insts
        ])

        return_list += [inst_pos.astype("int64").reshape([-1, max_len, 1])]

    if return_input_mask:
        # This is used to avoid attention on paddings.
        input_mask_data = np.array([[1] * len(inst) + [0] * (max_len - len(inst)) for inst in insts])
        input_mask_data = np.expand_dims(input_mask_data, axis=-1)
        return_list += [input_mask_data.astype("float32")]

    if return_max_len:
        return_list += [max_len]

    if return_num_token:
        num_token = 0
        for inst in insts:
            num_token += len(inst)
        return_list += [num_token]

    if return_seq_lens:
        seq_lens = np.array([len(inst) for inst in insts])
        return_list += [seq_lens.astype("int64").reshape([-1, 1])]

    return return_list if len(return_list) > 1 else return_list[0]


T
tangjiji 已提交
251 252 253 254
def pad_feature_data(data, pad_value=0.0, dtype="float32", return_mask=False):
    """
    pad visual features with given pad value
    """
T
tangjiji 已提交
255
    max_length=max([len(item) for item in data])
T
tangjiji 已提交
256
    data_width = len(data[0][0])
T
tangjiji 已提交
257 258
    out_data = np.ones((len(data), max_length, data_width), dtype=dtype) * pad_value
    out_mask = np.zeros((len(data), max_length, 1), dtype=dtype)
T
tangjiji 已提交
259 260 261 262 263 264 265 266 267 268 269
    for i in range(len(data)):
        out_data[i, 0: len(data[i]), :] = data[i]
        if return_mask:
            out_mask[i, 0:len(data[i]):] = 1.0
    if return_mask:
        return out_data, out_mask
    else:
        return out_data

if __name__ == "__main__":
    pass