run_mrc.py 13.8 KB
Newer Older
T
tianxin04 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification tasks."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
C
chenxuyi 已提交
19
from __future__ import unicode_literals
T
tianxin04 已提交
20 21 22

import os
import time
C
chenxuyi 已提交
23
import logging
T
tianxin04 已提交
24 25
import multiprocessing

T
tianxin 已提交
26 27 28 29 30
# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
# not take any effect.
os.environ['FLAGS_eager_delete_tensor_gb'] = '0'  # enable gc

T
tianxin04 已提交
31 32 33 34
import paddle.fluid as fluid

import reader.task_reader as task_reader
from model.ernie import ErnieConfig
T
tianxin 已提交
35
from finetune.mrc import create_model, evaluate
T
tianxin04 已提交
36
from optimization import optimization
C
chenxuyi 已提交
37
from utils.args import print_arguments, prepare_logger
T
tianxin04 已提交
38
from utils.init import init_pretraining_params, init_checkpoint
T
format  
tianxin04 已提交
39
from finetune_args import parser
T
tianxin04 已提交
40 41

args = parser.parse_args()
C
chenxuyi 已提交
42
log = logging.getLogger()
T
tianxin04 已提交
43

T
format  
tianxin04 已提交
44

T
tianxin04 已提交
45 46 47 48 49
def main(args):
    ernie_config = ErnieConfig(args.ernie_config_path)
    ernie_config.print_config()

    if args.use_cuda:
C
chenxuyi 已提交
50 51 52
        dev_list = fluid.cuda_places()
        place = dev_list[0]
        dev_count = len(dev_list)
T
tianxin04 已提交
53 54 55 56 57
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    exe = fluid.Executor(place)

T
tianxin 已提交
58
    reader = task_reader.MRCReader(
T
format  
tianxin04 已提交
59 60 61 62 63
        vocab_path=args.vocab_path,
        label_map_config=args.label_map_config,
        max_seq_len=args.max_seq_len,
        do_lower_case=args.do_lower_case,
        in_tokens=args.in_tokens,
T
tianxin 已提交
64 65 66 67 68 69 70 71
        random_seed=args.random_seed,
        tokenizer=args.tokenizer,
        is_classify=args.is_classify,
        is_regression=args.is_regression,
        for_cn=args.for_cn,
        task_id=args.task_id,
        doc_stride=args.doc_stride,
        max_query_length=args.max_query_length)
T
tianxin04 已提交
72 73 74 75 76

    if not (args.do_train or args.do_val or args.do_test):
        raise ValueError("For args `do_train`, `do_val` and `do_test`, at "
                         "least one of them must be True.")

C
chenxuyi 已提交
77 78
    if args.do_test:
        assert args.test_save is not None
T
tianxin04 已提交
79 80 81 82
    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed

T
tianxin 已提交
83 84
    if args.predict_batch_size == None:
        args.predict_batch_size = args.batch_size
T
tianxin04 已提交
85
    if args.do_train:
C
chenxuyi 已提交
86
        trainers_num = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
T
tianxin04 已提交
87 88 89 90
        train_data_generator = reader.data_generator(
            input_file=args.train_set,
            batch_size=args.batch_size,
            epoch=args.epoch,
C
chenxuyi 已提交
91
            dev_count=trainers_num,
T
tianxin 已提交
92
            shuffle=True,
T
tianxin04 已提交
93 94
            phase="train")

T
tianxin 已提交
95
        num_train_examples = reader.get_num_examples("train")
T
tianxin04 已提交
96 97

        if args.in_tokens:
C
chenxuyi 已提交
98 99
            if args.batch_size < args.max_seq_len:
                raise ValueError('if in_tokens=True, batch_size should greater than max_sqelen, got batch_size:%d seqlen:%d' % (args.batch_size, args.max_seq_len))
T
tianxin04 已提交
100 101 102 103 104 105
            max_train_steps = args.epoch * num_train_examples // (
                args.batch_size // args.max_seq_len) // dev_count
        else:
            max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count

        warmup_steps = int(max_train_steps * args.warmup_proportion)
C
chenxuyi 已提交
106 107 108 109
        log.info("Device count: %d" % dev_count)
        log.info("Num train examples: %d" % num_train_examples)
        log.info("Max train steps: %d" % max_train_steps)
        log.info("Num warmup steps: %d" % warmup_steps)
T
tianxin04 已提交
110 111 112 113 114 115 116 117

        train_program = fluid.Program()

        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                train_pyreader, graph_vars = create_model(
                    args,
                    pyreader_name='train_reader',
T
tianxin 已提交
118 119
                    ernie_config=ernie_config,
                    is_training=True)
C
chenxuyi 已提交
120
                scheduled_lr, _ = optimization(
T
tianxin04 已提交
121 122 123 124 125 126 127 128
                    loss=graph_vars["loss"],
                    warmup_steps=warmup_steps,
                    num_train_steps=max_train_steps,
                    learning_rate=args.learning_rate,
                    train_program=train_program,
                    startup_prog=startup_prog,
                    weight_decay=args.weight_decay,
                    scheduler=args.lr_scheduler,
C
chenxuyi 已提交
129 130 131 132 133 134 135
		    use_fp16=args.use_fp16,
		    use_dynamic_loss_scaling=args.use_dynamic_loss_scaling,
		    init_loss_scaling=args.init_loss_scaling,
		    incr_every_n_steps=args.incr_every_n_steps,
		    decr_every_n_nan_or_inf=args.decr_every_n_nan_or_inf,
		    incr_ratio=args.incr_ratio,
		    decr_ratio=args.decr_ratio)
T
tianxin04 已提交
136 137 138 139 140 141 142 143 144

        if args.verbose:
            if args.in_tokens:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program,
                    batch_size=args.batch_size // args.max_seq_len)
            else:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program, batch_size=args.batch_size)
C
chenxuyi 已提交
145
            log.info("Theoretical memory usage in training: %.3f - %.3f %s" %
T
tianxin04 已提交
146 147 148 149 150 151
                  (lower_mem, upper_mem, unit))

    if args.do_val or args.do_test:
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
T
tianxin 已提交
152
                test_pyreader, test_graph_vars = create_model(
T
tianxin04 已提交
153 154
                    args,
                    pyreader_name='test_reader',
T
tianxin 已提交
155 156
                    ernie_config=ernie_config,
                    is_training=False)
T
tianxin04 已提交
157 158 159

        test_prog = test_prog.clone(for_test=True)

T
tianxin 已提交
160 161
    nccl2_num_trainers = 1
    nccl2_trainer_id = 0
C
chenxuyi 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    if args.is_distributed:
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        worker_endpoints_env = os.getenv("PADDLE_TRAINER_ENDPOINTS")
        current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
        worker_endpoints = worker_endpoints_env.split(",")
        trainers_num = len(worker_endpoints)
        
        log.info("worker_endpoints:{} trainers_num:{} current_endpoint:{} \
              trainer_id:{}".format(worker_endpoints, trainers_num,
                                    current_endpoint, trainer_id))

        # prepare nccl2 env.
        config = fluid.DistributeTranspilerConfig()
        config.mode = "nccl2"
        t = fluid.DistributeTranspiler(config=config)
        t.transpile(
            trainer_id,
            trainers=worker_endpoints_env,
            current_endpoint=current_endpoint,
            program=train_program if args.do_train else test_prog,
            startup_program=startup_prog)
        nccl2_num_trainers = trainers_num
        nccl2_trainer_id = trainer_id

    exe = fluid.Executor(place)
T
tianxin04 已提交
187 188 189 190
    exe.run(startup_prog)

    if args.do_train:
        if args.init_checkpoint and args.init_pretraining_params:
C
chenxuyi 已提交
191
            log.warning(
T
tianxin04 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
                "WARNING: args 'init_checkpoint' and 'init_pretraining_params' "
                "both are set! Only arg 'init_checkpoint' is made valid.")
        if args.init_checkpoint:
            init_checkpoint(
                exe,
                args.init_checkpoint,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
        elif args.init_pretraining_params:
            init_pretraining_params(
                exe,
                args.init_pretraining_params,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
    elif args.do_val or args.do_test:
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or testing!")
        init_checkpoint(
            exe,
            args.init_checkpoint,
            main_program=startup_prog,
            use_fp16=args.use_fp16)

    if args.do_train:
        exec_strategy = fluid.ExecutionStrategy()
        if args.use_fast_executor:
            exec_strategy.use_experimental_executor = True
        exec_strategy.num_threads = dev_count
        exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope

        train_exe = fluid.ParallelExecutor(
            use_cuda=args.use_cuda,
            loss_name=graph_vars["loss"].name,
            exec_strategy=exec_strategy,
T
tianxin 已提交
227 228 229
            main_program=train_program,
            num_trainers=nccl2_num_trainers,
            trainer_id=nccl2_trainer_id)
T
tianxin04 已提交
230

231
        train_pyreader.set_batch_generator(train_data_generator)
T
tianxin04 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    else:
        train_exe = None

    if args.do_train:
        train_pyreader.start()
        steps = 0
        if warmup_steps > 0:
            graph_vars["learning_rate"] = scheduled_lr

        time_begin = time.time()
        while True:
            try:
                steps += 1
                if steps % args.skip_steps != 0:
                    train_exe.run(fetch_list=[])
                else:
T
format  
tianxin04 已提交
248 249
                    outputs = evaluate(train_exe, train_program, train_pyreader,
                                       graph_vars, "train")
T
tianxin04 已提交
250 251 252 253 254 255 256

                    if args.verbose:
                        verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size(
                        )
                        verbose += "learning rate: %f" % (
                            outputs["learning_rate"]
                            if warmup_steps > 0 else args.learning_rate)
C
chenxuyi 已提交
257
                        log.info(verbose)
T
tianxin04 已提交
258 259 260 261

                    current_example, current_epoch = reader.get_train_progress()
                    time_end = time.time()
                    used_time = time_end - time_begin
C
chenxuyi 已提交
262
                    log.info("epoch: %d, progress: %d/%d, step: %d, ave loss: %f, "
T
tianxin 已提交
263
                          "speed: %f steps/s" %
T
tianxin04 已提交
264
                          (current_epoch, current_example, num_train_examples,
T
tianxin 已提交
265
                           steps, outputs["loss"], args.skip_steps / used_time))
T
tianxin04 已提交
266 267 268 269 270 271 272 273 274
                    time_begin = time.time()

                if steps % args.save_steps == 0:
                    save_path = os.path.join(args.checkpoints,
                                             "step_" + str(steps))
                    fluid.io.save_persistables(exe, save_path, train_program)

                if steps % args.validation_steps == 0:
                    if args.do_val:
275
                        test_pyreader.set_batch_generator(
T
tianxin04 已提交
276 277 278 279
                            reader.data_generator(
                                args.dev_set,
                                batch_size=args.batch_size,
                                epoch=1,
T
tianxin 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292
                                dev_count=1,
                                shuffle=False,
                                phase="dev"))
                        evaluate(
                            exe,
                            test_prog,
                            test_pyreader,
                            test_graph_vars,
                            str(steps) + "_dev",
                            examples=reader.get_examples("dev"),
                            features=reader.get_features("dev"),
                            args=args)

T
tianxin04 已提交
293
                    if args.do_test:
294
                        test_pyreader.set_batch_generator(
T
tianxin04 已提交
295 296 297 298
                            reader.data_generator(
                                args.test_set,
                                batch_size=args.batch_size,
                                epoch=1,
T
tianxin 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311
                                dev_count=1,
                                shuffle=False,
                                phase="test"))
                        evaluate(
                            exe,
                            test_prog,
                            test_pyreader,
                            test_graph_vars,
                            str(steps) + "_test",
                            examples=reader.get_examples("test"),
                            features=reader.get_features("test"),
                            args=args)

T
tianxin04 已提交
312 313 314 315 316 317 318 319
            except fluid.core.EOFException:
                save_path = os.path.join(args.checkpoints, "step_" + str(steps))
                fluid.io.save_persistables(exe, save_path, train_program)
                train_pyreader.reset()
                break

    # final eval on dev set
    if args.do_val:
C
chenxuyi 已提交
320
        log.info("Final validation result:")
321
        test_pyreader.set_batch_generator(
T
tianxin04 已提交
322
            reader.data_generator(
T
format  
tianxin04 已提交
323 324 325
                args.dev_set,
                batch_size=args.batch_size,
                epoch=1,
T
tianxin 已提交
326 327 328 329 330 331 332 333 334 335 336 337
                dev_count=1,
                shuffle=False,
                phase="dev"))
        evaluate(
            exe,
            test_prog,
            test_pyreader,
            test_graph_vars,
            "dev",
            examples=reader.get_examples("dev"),
            features=reader.get_features("dev"),
            args=args)
T
tianxin04 已提交
338 339 340

    # final eval on test set
    if args.do_test:
C
chenxuyi 已提交
341
        log.info("Final test result:")
342
        test_pyreader.set_batch_generator(
T
tianxin04 已提交
343 344 345 346
            reader.data_generator(
                args.test_set,
                batch_size=args.batch_size,
                epoch=1,
T
tianxin 已提交
347 348 349 350 351 352 353 354 355 356 357 358
                dev_count=1,
                shuffle=False,
                phase="test"))
        evaluate(
            exe,
            test_prog,
            test_pyreader,
            test_graph_vars,
            "test",
            examples=reader.get_examples("test"),
            features=reader.get_features("test"),
            args=args)
T
tianxin04 已提交
359 360 361


if __name__ == '__main__':
C
chenxuyi 已提交
362 363
    prepare_logger(log)
    print_arguments(args)
T
tianxin 已提交
364 365 366 367
    while True:
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            main(args)