inference.cc 6.1 KB
Newer Older
C
chenxuyi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <glog/logging.h>
#include <paddle_inference_api.h>
#include <chrono>
#include <fstream>
#include <iostream>
#include <numeric>
#include <sstream>
#include <string>
#include <vector>

DEFINE_string(model_dir, "", "model directory");
DEFINE_string(data, "", "input data path");
DEFINE_int32(repeat, 1, "repeat");
DEFINE_bool(output_prediction, false, "Whether to output the prediction results.");
DEFINE_bool(use_gpu, false, "Whether to use GPU for prediction.");
DEFINE_int32(device, 0, "device.");


template <typename T>
void GetValueFromStream(std::stringstream *ss, T *t) {
  (*ss) >> (*t);
}

template <>
void GetValueFromStream<std::string>(std::stringstream *ss, std::string *t) {
  *t = ss->str();
}

// Split string to vector
template <typename T>
void Split(const std::string &line, char sep, std::vector<T> *v) {
  std::stringstream ss;
  T t;
  for (auto c : line) {
    if (c != sep) {
      ss << c;
    } else {
      GetValueFromStream<T>(&ss, &t);
      v->push_back(std::move(t));
      ss.str({});
      ss.clear();
    }
  }

  if (!ss.str().empty()) {
    GetValueFromStream<T>(&ss, &t);
    v->push_back(std::move(t));
    ss.str({});
    ss.clear();
  }
}

template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();

template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
  return paddle::PaddleDType::INT64;
}

template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
  return paddle::PaddleDType::FLOAT32;
}

// Parse tensor from string
template <typename T>
bool ParseTensor(const std::string &field, paddle::PaddleTensor *tensor) {
  std::vector<std::string> data;
  Split(field, ':', &data);
  if (data.size() < 2) return false;

  std::string shape_str = data[0];

  std::vector<int> shape;
  Split(shape_str, ' ', &shape);

  std::string mat_str = data[1];

  std::vector<T> mat;
  Split(mat_str, ' ', &mat);

  tensor->shape = shape;
  auto size =
      std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>()) *
      sizeof(T);
  tensor->data.Resize(size);
  std::copy(mat.begin(), mat.end(), static_cast<T *>(tensor->data.data()));
  tensor->dtype = GetPaddleDType<T>();

  return true;
}

// Parse input tensors from string
bool ParseLine(const std::string &line,
               std::vector<paddle::PaddleTensor> *tensors) {
  std::vector<std::string> fields;
  Split(line, ';', &fields);


  tensors->clear();
  tensors->reserve(4);

  int i = 0;
M
Meiyim 已提交
120
  // src_ids
C
chenxuyi 已提交
121 122
  paddle::PaddleTensor src_ids;
  ParseTensor<int64_t>(fields[i++], &src_ids);
M
Meiyim 已提交
123
  src_ids.name = "feed_0";
C
chenxuyi 已提交
124 125 126 127 128
  tensors->push_back(src_ids);

  // sent_ids
  paddle::PaddleTensor sent_ids;
  ParseTensor<int64_t>(fields[i++], &sent_ids);
M
Meiyim 已提交
129
  sent_ids.name = "feed_1";
C
chenxuyi 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
  tensors->push_back(sent_ids);

  return true;
}

// Print outputs to log
void PrintOutputs(const std::vector<paddle::PaddleTensor> &outputs) {
  //LOG(INFO) << "example_id\tcontradiction\tentailment\tneutral";
  for (size_t i = 0; i < outputs.front().data.length() / sizeof(float) / 3; i += 1) {
    std::cout << static_cast<float *>(outputs[0].data.data())[3 * i] << "\t"
         << static_cast<float *>(outputs[0].data.data())[3 * i + 1] << "\t"
         << static_cast<float *>(outputs[0].data.data())[3 * i + 2] << std::endl;
  }
}

bool LoadInputData(std::vector<std::vector<paddle::PaddleTensor>> *inputs) {
  if (FLAGS_data.empty()) {
    LOG(ERROR) << "please set input data path";
    return false;
  }

  std::ifstream fin(FLAGS_data);
  std::string line;

  int lineno = 0;
  while (std::getline(fin, line)) {
    std::vector<paddle::PaddleTensor> feed_data;
    if (!ParseLine(line, &feed_data)) {
      LOG(ERROR) << "Parse line[" << lineno << "] error!";
    } else {
      inputs->push_back(std::move(feed_data));
    }
  }

  return true;
}

// ernie inference demo
// Options:
//     --model_dir: ernie model file directory
//     --data: data path
//     --repeat: repeat num
//     --use_gpu: use gpu
int main(int argc, char *argv[]) {
  google::InitGoogleLogging(*argv);
  gflags::ParseCommandLineFlags(&argc, &argv, true);

  if (FLAGS_model_dir.empty()) {
    LOG(ERROR) << "please set model dir";
    return -1;
  }

  paddle::AnalysisConfig config;
  config.SetModel(FLAGS_model_dir);
  config.EnableUseGpu(100, 0);
  config.SwitchSpecifyInputNames(true);
  config.EnableCUDNN();
  config.SwitchIrOptim(true);
  config.EnableMemoryOptim();
  auto predictor = CreatePaddlePredictor(config);

  std::vector<std::vector<paddle::PaddleTensor>> inputs;
  if (!LoadInputData(&inputs)) {
    LOG(ERROR) << "load input data error!";
    return -1;
  }

  std::vector<paddle::PaddleTensor> fetch;
  int total_time{0};
  // auto predict_timer = []()
  int num_samples{0};
  int count{0};
  for (int i = 0; i < FLAGS_repeat; i++) {
    for (auto feed : inputs) {
      fetch.clear();
      auto start = std::chrono::system_clock::now();
      predictor->Run(feed, &fetch);
      if (FLAGS_output_prediction && i == 0) {
        PrintOutputs(fetch);
      }
      auto end = std::chrono::system_clock::now();
      count += 1;
      if (!fetch.empty()) {
        total_time +=
            std::chrono::duration_cast<std::chrono::milliseconds>(end - start)
                .count();
        //num_samples += fetch.front().data.length() / 2 / sizeof(float);
        num_samples += fetch.front().data.length() / (sizeof(float) * 2);
      }
    }
  }

  auto per_sample_ms =
      static_cast<float>(total_time) / num_samples;
  LOG(INFO) << "Run " << num_samples
            << " samples, average latency: " << per_sample_ms
            << "ms per sample.";
  LOG(INFO) << count;

  return 0;
}