finetune_seq2seq_dygraph.py 13.6 KB
Newer Older
M
Meiyim 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
from __future__ import unicode_literals

import sys
import argparse
import logging
import json
import os
import numpy as np
from copy import deepcopy

import paddle.fluid as F
import paddle.fluid.layers as L
import paddle.fluid.dygraph as D

from tqdm import tqdm

from ernie.modeling_ernie import ErnieModel, ErnieModelForPretraining
from ernie.modeling_ernie import _build_linear, _build_ln, append_name
from ernie.tokenizing_ernie import ErnieTokenizer
from ernie.optimization import AdamW, LinearDecay

from experimental.seq2seq.decode import beam_search_infilling, post_process
from experimental.seq2seq.modeling_ernie_gen import ErnieModelForGeneration

from propeller import log
import propeller.paddle as propeller

logging.getLogger().handlers[0]=log.handlers[0]
logging.getLogger().setLevel(logging.DEBUG)
log = logging.getLogger() 


@np.vectorize
def rev_lookup(i):
    return rev_dict[i]

def evaluate(model, datasets, step, args):
    did = D.parallel.Env().dev_id
    place = F.CUDAPlace(D.parallel.Env().dev_id)
    with open(os.path.join(args.predict_output_dir, 'pred.step%d.%d' % (step, did)), 'w') as outf:
        for step, data in enumerate(datasets.start(place)):
            (example_id, src_ids, src_sids, src_pids,
             _, _, _,
             _, 
             _, _, _, _) = data # never use target when infer
            output_ids = beam_search_infilling(model, src_ids, src_sids,
                    eos_id=tokenizer.sep_id,
                    sos_id=tokenizer.cls_id,
                    attn_id=tokenizer.vocab['[ATTN]'],
                    max_decode_len=args.max_decode_len, 
                    max_encode_len=args.max_encode_len, 
                    beam_width=args.beam_width)
            output_str = rev_lookup(output_ids.numpy())
            for eid, ostr in zip(example_id.numpy().tolist(), output_str.tolist()):
                if '[SEP]' in ostr:
                    ostr = ostr[: ostr.index('[SEP]')]
                ostr = ''.join(map(post_process, ostr))
                print('%d\t%s' % (eid, ostr), file=outf)

    model.train()


def seq2seq(model, tokenizer, args):
    log.info('Training starts with args: %r' % args)
    attn_id = tokenizer.vocab['[ATTN]']
    def gen_mask(batch_ids, mask_type='bidi', query_len=None, pad_value=0):
        if query_len is None:
            query_len = batch_ids.shape[1]
        if mask_type != 'empty':
            mask = (batch_ids != pad_value).astype(np.float32)
            mask = np.tile(np.expand_dims(mask, 1), [1, query_len, 1])
            if mask_type == 'causal':
                assert query_len == batch_ids.shape[1]
                mask = np.tril(mask)
            elif mask_type == 'causal_without_diag':
                assert query_len == batch_ids.shape[1]
                mask = np.tril(mask, -1)
            elif mask_type == 'diag':
                assert query_len == batch_ids.shape[1]
                mask = np.stack([np.diag(np.diag(m)) for m in mask], 0)
        else:
            mask_type == 'empty'
            mask = np.zeros_like(batch_ids).astype(np.float32)
            mask = np.tile(np.expand_dims(mask, 1), [1, query_len, 1])
        return mask

    def make_some_noice(ids):
        if args.use_random_noice:
            noice_ids = np.random.randint(1, len(tokenizer.vocab), size=ids.shape)
        else:
            noice_ids = np.ones_like(ids) * tokenizer.vocab['[NOISE]']
        pos, = np.where(np.ones_like(ids))
        np.random.shuffle(pos)
        pos = pos[: int(args.noise_prob * len(pos))]
        ids[pos,] = noice_ids[pos,]
        return ids

    def map_fn(example_id, src_ids, tgt_ids):
        src_ids = src_ids[: args.max_encode_len]
        tgt_ids = tgt_ids[: args.max_decode_len]
        src_ids, src_sids = tokenizer.build_for_ernie(src_ids)
        src_pids = np.arange(len(src_ids))

        tgt_ids, tgt_sids = tokenizer.build_for_ernie(tgt_ids)
        tgt_pids = np.arange(len(tgt_ids)) + len(src_ids) # continues position
        tgt_sids = np.ones_like(tgt_sids) * args.tgt_type_id

        attn_ids = np.ones_like(tgt_ids) * attn_id
        if args.noise_prob > 0.:
            tgt_labels = deepcopy(tgt_ids)
            tgt_ids = make_some_noice(tgt_ids) #corrupted
        else:
            tgt_labels = tgt_ids

        return (example_id, src_ids, src_pids, src_sids,
                tgt_ids, tgt_pids, tgt_sids,
                attn_ids, tgt_labels)

    def after_padding(example_id, src_ids, src_pids, src_sids,
                      tgt_ids, tgt_pids, tgt_sids,
                      attn_ids, tgt_labels):
        '''
        attention mask:
        ***  src,  tgt, attn
        src  00,   01,   11
        tgt  10,   11,   12
        attn 20,   21,   22

        ***   s1, s2 | t1 t2 t3| attn1 attn2 attn3
        s1    1,  1  | 0, 0, 0,| 0,    0,    0,
        s2    1,  1  | 0, 0, 0,| 0,    0,    0,
        -
        t1    1,  1, | 1, 0, 0,| 0,    0,    0,
        t2    1,  1, | 1, 1, 0,| 0,    0,    0,
        t3    1,  1, | 1, 1, 1,| 0,    0,    0,
        -
        attn1 1,  1, | 0, 0, 0,| 1,    0,    0,
        attn2 1,  1, | 1, 0, 0,| 0,    1,    0,
        attn3 1,  1, | 1, 1, 0,| 0,    0,    1,

        for details, see Fig3. https://arxiv.org/abs/2001.11314
        '''

        src_len = src_ids.shape[1]
        tgt_len = tgt_ids.shape[1]
        mask_00 = gen_mask(src_ids, 'bidi', query_len=src_len)
        mask_01 = gen_mask(tgt_ids, 'empty', query_len=src_len)
        mask_02 = gen_mask(attn_ids,'empty', query_len=src_len)

        mask_10 = gen_mask(src_ids, 'bidi', query_len=tgt_len)
        mask_11 = gen_mask(tgt_ids, 'causal', query_len=tgt_len)
        mask_12 = gen_mask(attn_ids, 'empty', query_len=tgt_len)

        mask_20 = gen_mask(src_ids, 'bidi', query_len=tgt_len)
        mask_21 = gen_mask(tgt_ids, 'causal_without_diag', query_len=tgt_len)
        mask_22 = gen_mask(attn_ids, 'diag', query_len=tgt_len)

        '''
        mask = np.concatenate([
            np.concatenate([mask_00, mask_01, mask_02], 2),
            np.concatenate([mask_10, mask_11, mask_12], 2),
            np.concatenate([mask_20, mask_21, mask_22], 2),
        ], 1)

        ids = np.concatenate([src_ids, tgt_ids, attn_ids], 1)
        pids = np.concatenate([src_pids, tgt_pids, tgt_pids], 1)
        sids = np.concatenate([src_sids, tgt_sids, tgt_sids], 1)

        '''

        mask_src_2_src = mask_00 
        mask_tgt_2_srctgt = np.concatenate([mask_10, mask_11], 2)
        mask_attn_2_srctgtattn = np.concatenate([mask_20, mask_21, mask_22], 2)


        tgt_labels = tgt_labels[np.where(tgt_labels != 0)]
        return (example_id, src_ids, src_sids, src_pids,
                tgt_ids, tgt_sids, tgt_pids,
                attn_ids, 
                mask_src_2_src, mask_tgt_2_srctgt, mask_attn_2_srctgtattn, tgt_labels)

    bytes_vocab = {k.encode('utf8'): v for k, v in tokenizer.vocab.items()}
    feature_column = propeller.data.FeatureColumns([
        propeller.data.LabelColumn('id'),
        propeller.data.TextColumn('src', unk_id=tokenizer.unk_id, vocab_dict=bytes_vocab),
        propeller.data.TextColumn('tgt', unk_id=tokenizer.unk_id, vocab_dict=bytes_vocab),
    ])
    
    train_ds = feature_column.build_dataset('train', data_dir=os.path.join(args.data_dir, 'train'), shuffle=False, repeat=True, use_gz=False) \
                                   .map(map_fn) 

    dev_ds = feature_column.build_dataset('dev', data_dir=os.path.join(args.data_dir, 'dev'), shuffle=False, repeat=False, use_gz=False) \
                                   .map(map_fn) \
                                   .padded_batch(args.eval_bsz) \
                                   .map(after_padding)

    log.debug('shard %d of %d'%(D.parallel.Env().dev_id, D.parallel.Env().nranks))
    train_ds = train_ds.shard(D.parallel.Env().nranks, D.parallel.Env().dev_id).shuffle(10000).padded_batch(args.bsz).map(after_padding)
    dev_ds = dev_ds.shard(D.parallel.Env().nranks, D.parallel.Env().dev_id)

    shapes = [[None, None]] * 7 + [[None, None, None]] * 3 +[[None]]
    types = ['int64'] * 11

    train_ds.data_shapes = shapes
    train_ds.data_types = types
    dev_ds.data_shapes = shapes
    dev_ds.data_types = types

    ctx = D.parallel.prepare_context()
    model = D.parallel.DataParallel(model, ctx)
    opt = AdamW(learning_rate=LinearDecay(args.lr, int(args.warmup_proportion * args.max_steps), args.max_steps), parameter_list=model.parameters(), weight_decay=args.wd)
    g_clip = F.dygraph_grad_clip.GradClipByGlobalNorm(1.0)
    attn_id = tokenizer.vocab['[ATTN]']
    for step, data in enumerate(train_ds.start(place)):
        (example_id, src_ids, src_sids, src_pids,
         tgt_ids, tgt_sids, tgt_pids,
         attn_ids, 
         mask_src_2_src, mask_tgt_2_srctgt, mask_attn_2_srctgtattn, tgt_labels) = data

        _, __, info = model(src_ids, sent_ids=src_sids, pos_ids=src_pids, attn_bias=mask_src_2_src, encode_only=True)
        cached_k, cached_v = info['caches']
        _, __, info = model(tgt_ids, sent_ids=tgt_sids, pos_ids=tgt_pids, attn_bias=mask_tgt_2_srctgt, past_cache=(cached_k, cached_v), encode_only=True)
        cached_k2, cached_v2 = info['caches']
        past_cache_k = [L.concat([k, k2], 1) for k, k2 in zip(cached_k, cached_k2)]
        past_cache_v = [L.concat([v, v2], 1) for v, v2 in zip(cached_v, cached_v2)]
        if args.label_smooth > 0.:
            tgt_labels = L.label_smooth(F.one_hot(tgt_labels, len(tokenizer.vocab)), epsilon=args.label_smooth)
        loss, _, __ = model(attn_ids, sent_ids=tgt_sids, pos_ids=tgt_pids, attn_bias=mask_attn_2_srctgtattn, 
                past_cache=(past_cache_k, past_cache_v), 
                tgt_labels=tgt_labels, 
                tgt_pos=L.where(attn_ids==attn_id))

        scaled_loss = model.scale_loss(loss)
        scaled_loss.backward()
        model.apply_collective_grads()
        opt.minimize(scaled_loss, grad_clip=g_clip)
        model.clear_gradients()
        if step % 10 == 0:
            loss = loss.numpy()
            ppl = np.exp(loss)
            log.debug('[step %d]train loss %.5f, ppl %.5f, lr %.3e' % (step, loss, ppl, opt.current_step_lr()))
        if args.save_dir is not None and step % 1000 == 0 and D.parallel.Env().dev_id == 0:
            F.save_dygraph(model.state_dict(), args.save_dir)
        if args.predict_output_dir is not None and (step + 1) % args.eval_steps == 0:
            assert os.path.exists(args.predict_output_dir), 'predict_output_dir not found: %s' % args.predict_output_dir
            log.debug('doing predict on gpu %d...' % D.parallel.Env().dev_id)
            evaluate(model, dev_ds, step, args)
        if step > args.max_steps:
            break

    if args.save_dir is not None:
        F.save_dygraph(model.state_dict(), args.save_dir)


if __name__ == '__main__':
    parser = argparse.ArgumentParser('seq2seq model with ERNIE')
    parser.add_argument('--from_pretrained', type=str, required=True, help='pretrained model directory or tag')
    parser.add_argument('--bsz', type=int, default=8, help='batchsize')
    parser.add_argument('--eval_bsz', type=int, default=20, help='batchsize')
    parser.add_argument('--epoch', type=int, default=30, help='epoch')
    parser.add_argument('--data_dir', type=str, required=True, help='data directory includes train / develop data')
    parser.add_argument('--max_steps', type=int, required=True, help='max_train_steps, set this to EPOCH * NUM_SAMPLES / BATCH_SIZE')
    parser.add_argument('--eval_steps', type=int, default=5000, help='evaluation frequency')
    parser.add_argument('--max_encode_len', type=int, default=640)
    parser.add_argument('--max_decode_len', type=int, default=120)
    parser.add_argument('--tgt_type_id', type=int, default=3)
    parser.add_argument('--warmup_proportion', type=float, default=0.1)
    parser.add_argument('--beam_width', type=int, default=3)
    parser.add_argument('--noise_prob', type=float, default=0.7, help='probability of token be repalced')
    parser.add_argument('--use_random_noice', action='store_true', help='if set, replace target tokens with random token from vocabulary, else replace with `[NOISE]`')
    parser.add_argument('--lr', type=float, default=5e-5, help='learning rate')
    parser.add_argument('--label_smooth', type=float, default=0.1)
    parser.add_argument('--predict_output_dir', type=str, default=None, help='predict file output directory')
    parser.add_argument('--inference_model_dir', type=str, default=None, help='inference model output directory')
    parser.add_argument('--save_dir', type=str, default=None, help='model output directory')
    parser.add_argument('--wd', type=float, default=0.01, help='weight decay, aka L2 regularizer')

    args = parser.parse_args()

    place = F.CUDAPlace(D.parallel.Env().dev_id)
    D.guard(place).__enter__()

    ernie = ErnieModelForGeneration.from_pretrained(args.from_pretrained)
    tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained, mask_token=None)
    rev_dict = {v: k for k, v in tokenizer.vocab.items()}
    rev_dict[tokenizer.pad_id] = '' # replace [PAD]
    rev_dict[tokenizer.unk_id] = '' # replace [PAD]

    seq2seq(ernie, tokenizer, args)