mrc_metrics.py 20.9 KB
Newer Older
M
Meiyim 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
from __future__ import unicode_literals


import sys
import re
import six
import logging
import math
import collections
import nltk

import unicodedata
from collections import namedtuple

RawResult = namedtuple("RawResult", ["unique_id", "start_logits", "end_logits"])

log = logging.getLogger(__name__)


def _is_whitespace(char):
    """Checks whether `chars` is a whitespace character."""
    # \t, \n, and \r are technically contorl characters but we treat them
    # as whitespace since they are generally considered as such.
    if char == " " or char == "\t" or char == "\n" or char == "\r":
        return True
    cat = unicodedata.category(char)
    if cat == "Zs":
        return True
    return False


def _is_control(char):
    """Checks whether `chars` is a control character."""
    # These are technically control characters but we count them as whitespace
    # characters.
    if char == "\t" or char == "\n" or char == "\r":
        return False
    cat = unicodedata.category(char)
    if cat.startswith("C"):
        return True
    return False


def _is_punctuation(char):
    """Checks whether `chars` is a punctuation character."""
    cp = ord(char)
    # We treat all non-letter/number ASCII as punctuation.
    # Characters such as "^", "$", and "`" are not in the Unicode
    # Punctuation class but we treat them as punctuation anyways, for
    # consistency.
    if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
        (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
        return True
    cat = unicodedata.category(char)
    if cat.startswith("P"):
        return True
    return False


def whitespace_tokenize(text):
    """Runs basic whitespace cleaning and splitting on a peice of text."""
    text = text.strip()
    if not text:
        return []
    tokens = text.split()
    return tokens


def convert_to_unicode(text):
    """Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
    if six.PY3:
        if isinstance(text, str):
            return text
        elif isinstance(text, bytes):
            return text.decode("utf-8", "ignore")
        else:
            raise ValueError("Unsupported string type: %s" % (type(text)))
    elif six.PY2:
        if isinstance(text, str):
            return text.decode("utf-8", "ignore")
        elif isinstance(text, unicode):
            return text
        else:
            raise ValueError("Unsupported string type: %s" % (type(text)))
    else:
        raise ValueError("Not running on Python2 or Python 3?")


class _BasicTokenizer(object):
    """Runs basic tokenization (punctuation splitting, lower casing, etc.)."""

    def __init__(self, do_lower_case=True):
        """Constructs a BasicTokenizer.

        Args:
            do_lower_case: Whether to lower case the input.
        """
        self.do_lower_case = do_lower_case

    def tokenize(self, text):
        """Tokenizes a piece of text."""
        text = convert_to_unicode(text)
        text = self._clean_text(text)

        # This was added on November 1st, 2018 for the multilingual and Chinese
        # models. This is also applied to the English models now, but it doesn't
        # matter since the English models were not trained on any Chinese data
        # and generally don't have any Chinese data in them (there are Chinese
        # characters in the vocabulary because Wikipedia does have some Chinese
        # words in the English Wikipedia.).
        text = self._tokenize_chinese_chars(text)

        orig_tokens = whitespace_tokenize(text)
        split_tokens = []
        for token in orig_tokens:
            if self.do_lower_case:
                token = token.lower()
                token = self._run_strip_accents(token)
            split_tokens.extend(self._run_split_on_punc(token))

        output_tokens = whitespace_tokenize(" ".join(split_tokens))
        return output_tokens

    def _run_strip_accents(self, text):
        """Strips accents from a piece of text."""
        text = unicodedata.normalize("NFD", text)
        output = []
        for char in text:
            cat = unicodedata.category(char)
            if cat == "Mn":
                continue
            output.append(char)
        return "".join(output)

    def _run_split_on_punc(self, text):
        """Splits punctuation on a piece of text."""
        chars = list(text)
        i = 0
        start_new_word = True
        output = []
        while i < len(chars):
            char = chars[i]
            if _is_punctuation(char):
                output.append([char])
                start_new_word = True
            else:
                if start_new_word:
                    output.append([])
                start_new_word = False
                output[-1].append(char)
            i += 1

        return ["".join(x) for x in output]

    def _tokenize_chinese_chars(self, text):
        """Adds whitespace around any CJK character."""
        output = []
        for char in text:
            cp = ord(char)
            if self._is_chinese_char(cp):
                output.append(" ")
                output.append(char)
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)

    def _is_chinese_char(self, cp):
        """Checks whether CP is the codepoint of a CJK character."""
        # This defines a "chinese character" as anything in the CJK Unicode block:
        #     https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
        #
        # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
        # despite its name. The modern Korean Hangul alphabet is a different block,
        # as is Japanese Hiragana and Katakana. Those alphabets are used to write
        # space-separated words, so they are not treated specially and handled
        # like the all of the other languages.
        if ((cp >= 0x4E00 and cp <= 0x9FFF) or  #
            (cp >= 0x3400 and cp <= 0x4DBF) or  #
            (cp >= 0x20000 and cp <= 0x2A6DF) or  #
            (cp >= 0x2A700 and cp <= 0x2B73F) or  #
            (cp >= 0x2B740 and cp <= 0x2B81F) or  #
            (cp >= 0x2B820 and cp <= 0x2CEAF) or
            (cp >= 0xF900 and cp <= 0xFAFF) or  #
            (cp >= 0x2F800 and cp <= 0x2FA1F)):  #
            return True

        return False

    def _clean_text(self, text):
        """Performs invalid character removal and whitespace cleanup on text."""
        output = []
        for char in text:
            cp = ord(char)
            if cp == 0 or cp == 0xfffd or _is_control(char):
                continue
            if _is_whitespace(char):
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)


def _get_best_indexes(logits, n_best_size):
    """Get the n-best logits from a list."""
    index_and_score = sorted(
        enumerate(logits), key=lambda x: x[1], reverse=True)

    best_indexes = []
    for i in range(len(index_and_score)):
        if i >= n_best_size:
            break
        best_indexes.append(index_and_score[i][0])
    return best_indexes


def _compute_softmax(scores):
    """Compute softmax probability over raw logits."""
    if not scores:
        return []

    max_score = None
    for score in scores:
        if max_score is None or score > max_score:
            max_score = score

    exp_scores = []
    total_sum = 0.0
    for score in scores:
        x = math.exp(score - max_score)
        exp_scores.append(x)
        total_sum += x

    probs = []
    for score in exp_scores:
        probs.append(score / total_sum)
    return probs


def _get_final_text(pred_text, orig_text, tokenizer):
    """Project the tokenized prediction back to the original text."""

    # When we created the data, we kept track of the alignment between original
    # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
    # now `orig_text` contains the span of our original text corresponding to the
    # span that we predicted.
    #
    # However, `orig_text` may contain extra characters that we don't want in
    # our prediction.
    #
    # For example, let's say:
    #   pred_text = steve smith
    #   orig_text = Steve Smith's
    #
    # We don't want to return `orig_text` because it contains the extra "'s".
    #
    # We don't want to return `pred_text` because it's already been normalized
    # (the SQuAD eval script also does punctuation stripping/lower casing but
    # our tokenizer does additional normalization like stripping accent
    # characters).
    #
    # What we really want to return is "Steve Smith".
    #
    # Therefore, we have to apply a semi-complicated alignment heruistic between
    # `pred_text` and `orig_text` to get a character-to-charcter alignment. This
    # can fail in certain cases in which case we just return `orig_text`.

    def _strip_spaces(text):
        ns_chars = []
        ns_to_s_map = collections.OrderedDict()
        for (i, c) in enumerate(text):
            if c == " ":
                continue
            ns_to_s_map[len(ns_chars)] = i
            ns_chars.append(c)
        ns_text = "".join(ns_chars)
        return (ns_text, ns_to_s_map)

    # We first tokenize `orig_text`, strip whitespace from the result
    # and `pred_text`, and check if they are the same length. If they are
    # NOT the same length, the heuristic has failed. If they are the same
    # length, we assume the characters are one-to-one aligned.

    tok_text = " ".join(tokenizer.tokenize(orig_text))

    start_position = tok_text.find(pred_text)
    if start_position == -1:
        return orig_text
    end_position = start_position + len(pred_text) - 1

    (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
    (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)

    if len(orig_ns_text) != len(tok_ns_text):
        return orig_text

    # We then project the characters in `pred_text` back to `orig_text` using
    # the character-to-character alignment.
    tok_s_to_ns_map = {}
    for (i, tok_index) in six.iteritems(tok_ns_to_s_map):
        tok_s_to_ns_map[tok_index] = i

    orig_start_position = None
    if start_position in tok_s_to_ns_map:
        ns_start_position = tok_s_to_ns_map[start_position]
        if ns_start_position in orig_ns_to_s_map:
            orig_start_position = orig_ns_to_s_map[ns_start_position]

    if orig_start_position is None:
        return orig_text

    orig_end_position = None
    if end_position in tok_s_to_ns_map:
        ns_end_position = tok_s_to_ns_map[end_position]
        if ns_end_position in orig_ns_to_s_map:
            orig_end_position = orig_ns_to_s_map[ns_end_position]

    if orig_end_position is None:
        return orig_text

    output_text = orig_text[orig_start_position:(orig_end_position + 1)]
    return output_text


def make_results(vocab, all_examples, all_features, all_results, n_best_size,
            max_answer_length, do_lower_case):
    """Write final predictions to the json file and log-odds of null if needed."""
    tokenizer = _BasicTokenizer(do_lower_case)
    example_index_to_features = collections.defaultdict(list)
    for feature in all_features:
        example_index_to_features[feature.example_index].append(feature)

    unique_id_to_result = {}
    for result in all_results:
        unique_id_to_result[result.unique_id] = result

    _PrelimPrediction = collections.namedtuple(  # pylint: disable=invalid-name
        "PrelimPrediction", [
            "feature_index", "start_index", "end_index", "start_logit",
            "end_logit"
        ])

    all_predictions = collections.OrderedDict()
    all_nbest_json = collections.OrderedDict()

    for (example_index, example) in enumerate(all_examples):
        features = example_index_to_features[example_index]

        prelim_predictions = []
        # keep track of the minimum score of null start+end of position 0
        for (feature_index, feature) in enumerate(features):
            result = unique_id_to_result[feature.unique_id]
            start_indexes = _get_best_indexes(result.start_logits, n_best_size)
            end_indexes = _get_best_indexes(result.end_logits, n_best_size)
            #log.debug(start_indexes)
            #log.debug(end_indexes)
            for start_index in start_indexes:
                for end_index in end_indexes:
                    # We could hypothetically create invalid predictions, e.g., predict
                    # that the start of the span is in the question. We throw out all
                    # invalid predictions.
                    if start_index >= len(feature.tokens):
                        continue
                    if end_index >= len(feature.tokens):
                        continue
                    if start_index not in feature.token_to_orig_map:
                        continue
                    if end_index not in feature.token_to_orig_map:
                        continue
                    if not feature.token_is_max_context.get(start_index, False):
                        continue
                    if end_index < start_index:
                        continue
                    length = end_index - start_index + 1
                    if length > max_answer_length:
                        continue
                    prelim_predictions.append(
                        _PrelimPrediction(
                            feature_index=feature_index,
                            start_index=start_index,
                            end_index=end_index,
                            start_logit=result.start_logits[start_index],
                            end_logit=result.end_logits[end_index]))

        prelim_predictions = sorted(
            prelim_predictions,
            key=lambda x: (x.start_logit + x.end_logit),
            reverse=True)

        _NbestPrediction = collections.namedtuple(  # pylint: disable=invalid-name
            "NbestPrediction", ["text", "start_logit", "end_logit"])

        seen_predictions = {}
        nbest = []
        for pred in prelim_predictions:
            if len(nbest) >= n_best_size:
                break
            feature = features[pred.feature_index]
            if pred.start_index > 0:  # this is a non-null prediction
                tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1
                                                              )]
                orig_doc_start = feature.token_to_orig_map[pred.start_index]
                orig_doc_end = feature.token_to_orig_map[pred.end_index]
                orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end +
                                                                 1)]
                tok_text = " ".join(tok_tokens)

                # De-tokenize WordPieces that have been split off.
                tok_text = tok_text.replace(" ##", "")
                tok_text = tok_text.replace("##", "")

                # Clean whitespace
                tok_text = tok_text.strip()
                tok_text = " ".join(tok_text.split())
                orig_text = "".join(orig_tokens)
                final_text = _get_final_text(tok_text, orig_text, tokenizer)
                if final_text in seen_predictions:
                    continue

                seen_predictions[final_text] = True
            else:
                final_text = ""
                seen_predictions[final_text] = True

            nbest.append(
                _NbestPrediction(
                    text=final_text,
                    start_logit=pred.start_logit,
                    end_logit=pred.end_logit))

        # In very rare edge cases we could have no valid predictions. So we
        # just create a nonce prediction in this case to avoid failure.
        if not nbest:
            nbest.append(
                _NbestPrediction(
                    text="empty", start_logit=0.0, end_logit=0.0))

        total_scores = []
        best_non_null_entry = None
        for entry in nbest:
            total_scores.append(entry.start_logit + entry.end_logit)

        probs = _compute_softmax(total_scores)

        nbest_json = []
        for (i, entry) in enumerate(nbest):
            output = collections.OrderedDict()
            output["text"] = entry.text
            output["probability"] = probs[i]
            output["start_logit"] = entry.start_logit
            output["end_logit"] = entry.end_logit
            nbest_json.append(output)
        #log.debug(nbest_json[0])
        #log.debug(example.qas_id)

        assert len(nbest_json) >= 1

        all_predictions[example.qas_id] = nbest_json[0]["text"]
        all_nbest_json[example.qas_id] = nbest_json
    return all_predictions, all_nbest_json


# split Chinese with English
def mixed_segmentation(in_str, rm_punc=False):
    """mix segmentation"""
    in_str = in_str.lower().strip()
    segs_out = []
    temp_str = ""
    sp_char = ['-', ':', '_', '*', '^', '/', '\\', '~', '`', '+', '=', 
               ',', '。', ':', '?', '!', '“', '”', ';', '’', '《', '》', '……', '·', '、', 
               '「', '」', '(', ')', '-', '~', '『', '』']
    for char in in_str:
        if rm_punc and char in sp_char:
            continue
        if re.search(r'[\u4e00-\u9fa5]', char) or char in sp_char:
            if temp_str != "":
                ss = nltk.word_tokenize(temp_str)
                segs_out.extend(ss)
                temp_str = ""
            segs_out.append(char)
        else:
            temp_str += char

    #handling last part
    if temp_str != "":
        ss = nltk.word_tokenize(temp_str)
        segs_out.extend(ss)

    return segs_out


# remove punctuation
def remove_punctuation(in_str):
    """remove punctuation"""
    in_str = in_str.lower().strip()
    sp_char = ['-', ':', '_', '*', '^', '/', '\\', '~', '`', '+', '=', 
               ',', '。', ':', '?', '!', '“', '”', ';', '’', '《', '》', '……', '·', '、', 
               '「', '」', '(', ')', '-', '~', '『', '』']
    out_segs = []
    for char in in_str:
        if char in sp_char:
            continue
        else:
            out_segs.append(char)
    return ''.join(out_segs)


# find longest common string
def find_lcs(s1, s2):
    """find_lcs"""
    m = [[0 for i in range(len(s2)+1)] for j in range(len(s1)+1)]
    mmax = 0
    p = 0
    for i in range(len(s1)):
        for j in range(len(s2)):
            if s1[i] == s2[j]:
                m[i + 1][j + 1] = m[i][j] + 1
                if m[i + 1][j + 1] > mmax:
                    mmax = m[i + 1][j + 1]
                    p = i + 1
    return s1[p - mmax: p], mmax


def calc_f1_score(answers, prediction):
    """calc_f1_score"""
    f1_scores = []
    for ans in answers:
        ans_segs = mixed_segmentation(ans, rm_punc=True)
        prediction_segs = mixed_segmentation(prediction, rm_punc=True)
        lcs, lcs_len = find_lcs(ans_segs, prediction_segs)
        if lcs_len == 0:
            f1_scores.append(0)
            continue
        precision     = 1.0 * lcs_len / len(prediction_segs)
        recall         = 1.0 * lcs_len / len(ans_segs)
        f1             = (2 * precision * recall) / (precision + recall)
        f1_scores.append(f1)
    return max(f1_scores)


def calc_em_score(answers, prediction):
    """calc_f1_score"""
    em = 0
    for ans in answers:
        ans_ = remove_punctuation(ans)
        prediction_ = remove_punctuation(prediction)
        if ans_ == prediction_:
            em = 1
            break
    return em


def evaluate(ground_truth_file, prediction_file):
    """evaluate"""
    f1 = 0
    em = 0
    total_count = 0
    skip_count = 0
    for instances in ground_truth_file["data"]:
        for instance in instances["paragraphs"]:
            context_text = instance['context'].strip()
            for qas in instance['qas']:
                total_count += 1
                query_id    = qas['id'].strip()
                query_text  = qas['question'].strip()
                answers     = [ans["text"] for ans in qas["answers"]]

                if query_id not in prediction_file:
                    sys.stderr.write('Unanswered question: {}\n'.format(query_id))
                    skip_count += 1
                    continue

                prediction     = prediction_file[query_id]
                f1 += calc_f1_score(answers, prediction)
                em += calc_em_score(answers, prediction)

    f1_score = f1 / total_count
    em_score = em / total_count
    return [f1_score, em_score, total_count, skip_count]