finetune_ner_dygraph.py 7.4 KB
Newer Older
M
Meiyim 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import re
import time
import logging
import six
import json
from random import random
from tqdm import tqdm
from collections import OrderedDict
from functools import reduce, partial

import numpy as np
import multiprocessing
import pickle
import jieba
import logging

from sklearn.metrics import f1_score
import paddle
import paddle.fluid as F
import paddle.fluid.dygraph as FD
import paddle.fluid.layers as L

from propeller import log
import propeller.paddle as propeller

log.setLevel(logging.DEBUG)
logging.getLogger().addHandler(log.handlers[0])
logging.getLogger().setLevel(logging.DEBUG)

from ernie.modeling_ernie import ErnieModel, ErnieModelForSequenceClassification, ErnieModelForTokenClassification
from ernie.tokenizing_ernie import ErnieTokenizer
from ernie.optimization import AdamW, LinearDecay


if __name__ == '__main__':
    parser = propeller.ArgumentParser('NER model with ERNIE')
    parser.add_argument('--max_seqlen', type=int, default=256)
    parser.add_argument('--bsz', type=int, default=32)
    parser.add_argument('--data_dir', type=str, required=True)
    parser.add_argument('--epoch', type=int, default=3)
    parser.add_argument('--warmup_steps', type=int, default=1000)
    parser.add_argument('--max_steps', type=int, default=30000)
    parser.add_argument('--from_pretrained', type=str, required=True)
    parser.add_argument('--lr', type=float, default=5e-5)
    args = parser.parse_args()

    tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained)


    def tokenizer_func(inputs):
        ret = inputs.split(b'\2')
        tokens, orig_pos = [], []
        for i, r in enumerate(ret):
            t = tokenizer.tokenize(r)
            for tt in t:
                tokens.append(tt)
                orig_pos.append(i)
        assert len(tokens) == len(orig_pos)
        return tokens + orig_pos

    def tokenizer_func_for_label(inputs):
        return inputs.split(b'\2')

    feature_column = propeller.data.FeatureColumns([
        propeller.data.TextColumn('text_a', unk_id=tokenizer.unk_id, vocab_dict=tokenizer.vocab, tokenizer=tokenizer_func),
        propeller.data.TextColumn('label', unk_id=6, vocab_dict={
            b"B-PER": 0,
            b"I-PER": 1,
            b"B-ORG": 2,
            b"I-ORG": 3,
            b"B-LOC": 4,
            b"I-LOC": 5,
        },
        tokenizer=tokenizer_func_for_label,)
    ])

    def before(seg, label):
        seg, orig_pos = np.split(seg, 2)
        aligned_label = label[orig_pos]
        seg, _ = tokenizer.truncate(seg, [], args.max_seqlen)
        aligned_label, _ = tokenizer.truncate(aligned_label, [], args.max_seqlen)
        orig_pos, _ = tokenizer.truncate(orig_pos, [], args.max_seqlen)

        sentence, segments = tokenizer.build_for_ernie(seg) #utils.data.build_1_pair(seg, max_seqlen=args.max_seqlen, cls_id=cls_id, sep_id=sep_id)
        aligned_label = np.concatenate([[-100], aligned_label, [-100]], 0)
        orig_pos = np.concatenate([[-100], orig_pos, [-100]])

        assert len(aligned_label) == len(sentence) == len(orig_pos), (len(aligned_label), len(sentence), len(orig_pos)) # alinged
        return sentence, segments, aligned_label, label, orig_pos

    train_ds = feature_column.build_dataset('train', data_dir=os.path.join(args.data_dir, 'train'), shuffle=True, repeat=False, use_gz=False) \
                                   .map(before) \
                                   .padded_batch(args.bsz, (0, 0, -100, -100, -100)) \

    dev_ds = feature_column.build_dataset('dev', data_dir=os.path.join(args.data_dir, 'dev'), shuffle=False, repeat=False, use_gz=False) \
                                   .map(before) \
                                   .padded_batch(args.bsz, (0, 0, -100, -100, -100)) \

    test_ds = feature_column.build_dataset('test', data_dir=os.path.join(args.data_dir, 'test'), shuffle=False, repeat=False, use_gz=False) \
                                   .map(before) \
                                   .padded_batch(args.bsz, (0, 0, -100, -100, -100)) \



    shapes = ([-1, args.max_seqlen], [-1, args.max_seqlen], [-1, args.max_seqlen])
    types = ('int64', 'int64', 'int64')

    train_ds.data_shapes = shapes
    train_ds.data_types = types
    dev_ds.data_shapes = shapes
    dev_ds.data_types = types
    test_ds.data_shapes = shapes
    test_ds.data_types = types

    with FD.guard():
        model = ErnieModelForTokenClassification.from_pretrained(args.from_pretrained, num_labels=7, name='')

        opt = AdamW(learning_rate=LinearDecay(args.lr, args.warmup_steps, args.max_steps), parameter_list=model.parameters(), weight_decay=0.01)
        #opt = F.optimizer.AdamOptimizer(learning_rate=LinearDecay(args.lr, args.warmup_steps, args.max_steps), parameter_list=model.parameters())
        for epoch in range(args.epoch):
            for step, (ids, sids, aligned_label, label, orig_pos) in enumerate(tqdm(train_ds.start())):
                loss, _ = model(ids, sids, labels=aligned_label)
                loss.backward()
                if step % 10 == 0 :
                    log.debug('train loss %.5f' % loss.numpy())
                opt.minimize(loss)
                model.clear_gradients()
                if step % 100 == 0 :
                    all_pred, all_label = [], []
                    with FD.base._switch_tracer_mode_guard_(is_train=False):
                        model.eval()
                        for step, (ids, sids, aligned_label, label, orig_pos) in enumerate(tqdm(dev_ds.start())):
                            loss, logits = model(ids, sids, labels=aligned_label)
                            #print('\n'.join(map(str, logits.numpy().tolist())))

                            for pos, lo, la in zip(orig_pos.numpy(), logits.numpy(), label.numpy()):
                                _dic = OrderedDict()
                                for p, l in zip(pos, lo):
                                    _dic.setdefault(p, []).append(l)
                                del _dic[-100] # delete cls/sep/pad position
                                merged_lo = np.array([np.array(l).mean(0) for _, l in six.iteritems(_dic)])
                                merged_preds = np.argmax(merged_lo, -1)
                                la = la[np.where(la!=-100)] #remove pad
                                if len(la) > len(merged_preds):
                                    log.warn('accuracy loss due to truncation: label len:%d, truncate to %d' % (len(la), len(merged_preds)))
                                    merged_preds = np.pad(merged_preds, [0, len(la) - len(merged_preds)], mode='constant', constant_values=-100)
                                all_label.append(la)
                                all_pred.append(merged_preds)
                        model.train()

                    f1 = f1_score(np.concatenate(all_label), np.concatenate(all_pred), average='macro')
                    log.debug('eval f1: %.5f' % f1)
        F.save_dygraph(model.state_dict(), './saved')