pretrain_static.py 14.1 KB
Newer Older
M
Meiyim 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from __future__ import absolute_import
from __future__ import unicode_literals

import sys
import io
import os
import time
import numpy as np
import re
import logging
import six
from glob import glob
M
Meiyim 已提交
27
from pathlib import Path
M
Meiyim 已提交
28 29 30
from functools import reduce, partial
import itertools

M
Meiyim 已提交
31
import paddle as P
M
Meiyim 已提交
32 33 34 35 36 37 38 39
import json

from tqdm import tqdm

import random as r

from ernie.modeling_ernie import ErnieModelForPretraining
from ernie.tokenizing_ernie import ErnieTokenizer
M
Meiyim 已提交
40
from demo.optimization import optimization
M
Meiyim 已提交
41 42

import propeller.paddle as propeller
M
Meiyim 已提交
43
import propeller as propeller_base
M
Meiyim 已提交
44 45 46 47 48 49 50 51 52 53 54
from propeller.paddle.data import Dataset

from propeller import log

log.setLevel(logging.DEBUG)
logging.getLogger().setLevel(logging.DEBUG)

if six.PY3:
    from itertools import accumulate
else:
    import operator
M
Meiyim 已提交
55

M
Meiyim 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    def accumulate(iterable, func=operator.add, initial=None):
        'Return running totals'
        # accumulate([1,2,3,4,5]) --> 1 3 6 10 15
        # accumulate([1,2,3,4,5], initial=100) --> 100 101 103 106 110 115
        # accumulate([1,2,3,4,5], operator.mul) --> 1 2 6 24 120
        it = iter(iterable)
        total = initial
        if initial is None:
            try:
                total = next(it)
            except StopIteration:
                return
        yield total
        for element in it:
            total = func(total, element)
            yield total


M
Meiyim 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
def ernie_pretrain_model_fn(features, mode, params, run_config):
    """propeller Model wraper for paddle-ERNIE """
    src_ids, sent_ids, mlm_label, mask_pos, nsp_label = features

    ernie = ErnieModelForPretraining(params, name='')
    total_loss, mlm_loss, nsp_loss = ernie(
        src_ids,
        sent_ids,
        labels=mlm_label,
        mlm_pos=mask_pos,
        nsp_labels=nsp_label)

    metrics = None
    inf_spec = None

    propeller.summary.scalar('loss', total_loss)
    propeller.summary.scalar('nsp-loss', nsp_loss)
    propeller.summary.scalar('mlm-loss', mlm_loss)

    lr_step_hook, loss_scale_coef = optimization(
        loss=total_loss,
        warmup_steps=params['warmup_steps'],
        num_train_steps=run_config.max_steps,
        learning_rate=params['learning_rate'],
        train_program=P.static.default_main_program(),
        startup_prog=P.static.default_startup_program(),
        weight_decay=params['weight_decay'],
        scheduler="linear_warmup_decay",
        use_fp16=args.use_amp, )
    scheduled_lr = P.static.default_main_program().global_block().var(
        'learning_rate_0')
    propeller.summary.scalar('lr', scheduled_lr)
    if args.use_amp:
        propeller.summary.scalar('loss_scaling', loss_scale_coef)
    pred = [total_loss]

    return propeller.ModelSpec(
        loss=total_loss,
        mode=mode,
        metrics=metrics,
        predictions=pred,
        train_hooks=[lr_step_hook])


M
Meiyim 已提交
118
def truncate_sentence(seq, from_length, to_length):
M
Meiyim 已提交
119 120 121
    random_begin = np.random.randint(
        0, np.maximum(0, from_length - to_length) + 1)
    return seq[random_begin:random_begin + to_length]
M
Meiyim 已提交
122 123 124 125 126 127 128 129 130 131 132


def build_pair(seg_a, seg_b, max_seqlen, vocab):
    #log.debug('pair %s \n %s' % (seg_a, seg_b))
    cls_id = vocab['[CLS]']
    sep_id = vocab['[SEP]']
    a_len = len(seg_a)
    b_len = len(seg_b)
    ml = max_seqlen - 3
    half_ml = ml // 2
    if a_len > b_len:
M
Meiyim 已提交
133 134
        a_len_truncated, b_len_truncated = np.maximum(
            half_ml, ml - b_len), np.minimum(half_ml, b_len)
M
Meiyim 已提交
135
    else:
M
Meiyim 已提交
136 137
        a_len_truncated, b_len_truncated = np.minimum(
            half_ml, a_len), np.maximum(half_ml, ml - a_len)
M
Meiyim 已提交
138 139 140 141 142 143 144 145 146

    seg_a = truncate_sentence(seg_a, a_len, a_len_truncated)
    seg_b = truncate_sentence(seg_b, b_len, b_len_truncated)

    seg_a_txt, seg_a_info = seg_a[:, 0], seg_a[:, 1]
    seg_b_txt, seg_b_info = seg_b[:, 0], seg_b[:, 1]

    token_type_a = np.ones_like(seg_a_txt, dtype=np.int64) * 0
    token_type_b = np.ones_like(seg_b_txt, dtype=np.int64) * 1
M
Meiyim 已提交
147 148
    sen_emb = np.concatenate(
        [[cls_id], seg_a_txt, [sep_id], seg_b_txt, [sep_id]], 0)
M
Meiyim 已提交
149
    info_emb = np.concatenate([[-1], seg_a_info, [-1], seg_b_info, [-1]], 0)
M
Meiyim 已提交
150 151
    token_type_emb = np.concatenate(
        [[0], token_type_a, [0], token_type_b, [1]], 0)
M
Meiyim 已提交
152 153 154 155 156 157 158 159 160 161 162

    return sen_emb, info_emb, token_type_emb


def apply_mask(sentence, seg_info, mask_rate, vocab_size, vocab):
    pad_id = vocab['[PAD]']
    mask_id = vocab['[MASK]']
    shape = sentence.shape
    batch_size, seqlen = shape

    invalid_pos = np.where(seg_info == -1)
M
Meiyim 已提交
163
    seg_info += 1  #no more =1
M
Meiyim 已提交
164 165
    seg_info_flatten = seg_info.reshape([-1])
    seg_info_incr = seg_info_flatten - np.roll(seg_info_flatten, shift=1)
M
Meiyim 已提交
166 167
    seg_info = np.add.accumulate(
        np.array([0 if s == 0 else 1 for s in seg_info_incr])).reshape(shape)
M
Meiyim 已提交
168 169 170 171 172
    seg_info[invalid_pos] = -1

    u_seginfo = np.array([i for i in np.unique(seg_info) if i != -1])
    np.random.shuffle(u_seginfo)
    sample_num = max(1, int(len(u_seginfo) * mask_rate))
M
Meiyim 已提交
173
    u_seginfo = u_seginfo[:sample_num]
M
Meiyim 已提交
174 175
    mask = reduce(np.logical_or, [seg_info == i for i in u_seginfo])

M
Meiyim 已提交
176
    mask[:, 0] = False  # ignore CLS head
M
Meiyim 已提交
177 178

    rand = np.random.rand(*shape)
M
Meiyim 已提交
179 180 181
    choose_original = rand < 0.1  #
    choose_random_id = (0.1 < rand) & (rand < 0.2)  #
    choose_mask_id = 0.2 < rand  #
M
Meiyim 已提交
182 183 184 185 186 187 188 189 190
    random_id = np.random.randint(1, vocab_size, size=shape)

    replace_id = mask_id * choose_mask_id + \
                 random_id * choose_random_id + \
                 sentence * choose_original

    mask_pos = np.where(mask)
    #mask_pos_flatten = list(map(lambda idx: idx[0] * seqlen + idx[1], zip(*mask_pos))) #transpose
    mask_label = sentence[mask_pos]
M
Meiyim 已提交
191
    sentence[mask_pos] = replace_id[mask_pos]  #overwrite
M
Meiyim 已提交
192 193 194 195
    #log.debug(mask_pos_flatten)
    return sentence, np.stack(mask_pos, -1), mask_label


M
Meiyim 已提交
196
def make_pretrain_dataset(name, dir, vocab, hparams, args):
M
Meiyim 已提交
197 198
    gz_files = glob(dir)
    if not gz_files:
M
Meiyim 已提交
199
        raise ValueError('train data not found in %s' % dir)
M
Meiyim 已提交
200 201

    log.info('read from %s' % '\n'.join(gz_files))
M
Meiyim 已提交
202 203
    max_input_seqlen = args.max_seqlen
    max_pretrain_seqlen = lambda: max_input_seqlen if r.random() > 0.15 else r.randint(1, max_input_seqlen)  # short sentence rate
M
Meiyim 已提交
204

M
Meiyim 已提交
205 206
    def _parse_gz(record_str):  # function that takes python_str as input
        ex = propeller_base.data.example_pb2.SequenceExample()
M
Meiyim 已提交
207
        ex.ParseFromString(record_str)
M
Meiyim 已提交
208 209 210 211 212 213 214 215 216 217
        doc = [
            np.array(
                f.int64_list.value, dtype=np.int64)
            for f in ex.feature_lists.feature_list['txt'].feature
        ]
        doc_seg = [
            np.array(
                f.int64_list.value, dtype=np.int64)
            for f in ex.feature_lists.feature_list['segs'].feature
        ]
M
Meiyim 已提交
218 219 220 221 222
        return doc, doc_seg

    def bb_to_segments(filename):
        ds = Dataset.from_record_file(filename).map(_parse_gz)
        iterable = iter(ds)
M
Meiyim 已提交
223

M
Meiyim 已提交
224 225 226 227 228 229 230 231 232
        def gen():
            buf, size = [], 0
            iterator = iter(ds)
            while 1:
                doc, doc_seg = next(iterator)
                for line, line_seg in zip(doc, doc_seg):
                    #line = np.array(sp_model.SampleEncodeAsIds(line, -1, 0.1), dtype=np.int64) # 0.1 means large variance on sentence piece result
                    if len(line) == 0:
                        continue
M
Meiyim 已提交
233 234 235
                    line = np.array(
                        line
                    )  # 0.1 means large variance on sentence piece result
M
Meiyim 已提交
236 237 238 239 240 241 242
                    line_seg = np.array(line_seg)
                    size += len(line)
                    buf.append(np.stack([line, line_seg]).transpose())
                    if size > max_input_seqlen:
                        yield buf,
                        buf, size = [], 0
                if len(buf) != 0:
M
Meiyim 已提交
243
                    yield buf,
M
Meiyim 已提交
244
                    buf, size = [], 0
M
Meiyim 已提交
245

M
Meiyim 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258
        return Dataset.from_generator_func(gen)

    def sample_negative(dataset):
        def gen():
            iterator = iter(dataset)
            while True:
                chunk_a, = next(iterator)
                #chunk_b, = next(iterator)

                seqlen = max_pretrain_seqlen()
                seqlen_a = r.randint(1, seqlen)
                seqlen_b = seqlen - seqlen_a
                len_a = list(accumulate([len(c) for c in chunk_a]))
M
Meiyim 已提交
259 260 261 262 263
                buf_a = [c for c, l in zip(chunk_a, len_a)
                         if l < seqlen_a]  #always take the first one
                buf_b = [
                    c for c, l in zip(chunk_a, len_a) if seqlen_a <= l < seqlen
                ]
M
Meiyim 已提交
264

M
Meiyim 已提交
265
                if r.random() < 0.5:  #pos or neg
M
Meiyim 已提交
266 267 268 269 270 271 272 273 274 275 276
                    label = np.int64(1)
                else:
                    label = np.int64(0)
                    buf_a, buf_b = buf_b, buf_a

                if not (len(buf_a) and len(buf_b)):
                    continue
                a = np.concatenate(buf_a)
                b = np.concatenate(buf_b)
                #log.debug(a)
                #log.debug(b)
M
Meiyim 已提交
277 278 279
                sample, seg_info, token_type = build_pair(
                    a, b, args.max_seqlen,
                    vocab)  #negative sample might exceed max seqlen
M
Meiyim 已提交
280 281 282 283 284 285 286
                yield sample, seg_info, token_type, label

        ds = propeller.data.Dataset.from_generator_func(gen)
        return ds

    def after(sentence, seg_info, segments, label):
        batch_size, seqlen = sentence.shape
M
Meiyim 已提交
287 288
        sentence, mask_pos, mlm_label = apply_mask(
            sentence, seg_info, args.mask_rate, hparams.vocab_size, vocab)
M
Meiyim 已提交
289 290 291 292

        ra = r.random()
        if ra < args.check:
            print('***')
M
Meiyim 已提交
293 294 295 296
            print('\n'.join([
                str(j) + '\t' + '|'.join(map(str, i))
                for i, j in zip(sentence.tolist(), label)
            ]))
M
Meiyim 已提交
297
            print('***')
M
Meiyim 已提交
298 299
            print('\n'.join(
                ['|'.join(map(str, i)) for i in seg_info.tolist()]))
M
Meiyim 已提交
300 301 302 303 304 305 306 307 308 309
            print('***')
            print('|'.join(map(str, mlm_label.tolist())))
            print('***')

        return sentence, segments, mlm_label, mask_pos, label

    # pretrain pipeline
    dataset = Dataset.from_list(gz_files)
    if propeller.train.distribution.status.mode == propeller.train.distribution.DistributionMode.NCCL:
        log.info('Apply sharding in distribution env')
M
Meiyim 已提交
310 311 312
        dataset = dataset.shard(
            propeller.train.distribution.status.num_replica,
            propeller.train.distribution.status.replica_id)
M
Meiyim 已提交
313 314
    dataset = dataset.repeat().shuffle(buffer_size=len(gz_files))

M
Meiyim 已提交
315 316 317 318
    dataset = dataset.interleave(
        map_fn=bb_to_segments, cycle_length=len(gz_files), block_length=1)
    dataset = dataset.shuffle(
        buffer_size=1000)  #must shuffle to ensure negative sample randomness
M
Meiyim 已提交
319
    dataset = sample_negative(dataset)
M
Meiyim 已提交
320
    dataset = dataset.padded_batch(hparams.batch_size, (0, 0, 0, 0)).map(after)
M
Meiyim 已提交
321 322 323 324 325 326 327 328 329 330 331
    dataset.name = name
    return dataset


if __name__ == '__main__':
    if six.PY3:
        import io
        sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8')
        sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8')

    parser = propeller.ArgumentParser('DAN model with Paddle')
M
Meiyim 已提交
332 333 334 335 336 337
    parser.add_argument('--max_seqlen', type=int, default=256)
    parser.add_argument('--data_dir', type=str, required=True)
    parser.add_argument('--from_pretrained', type=Path, default=None)
    parser.add_argument('--use_amp', action='store_true')
    parser.add_argument('--mask_rate', type=float, default=0.15)
    parser.add_argument('--check', type=float, default=0.)
M
Meiyim 已提交
338 339

    args = parser.parse_args()
M
Meiyim 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    P.enable_static()

    if not os.path.exists(args.from_pretrained):
        raise ValueError('--from_pretrained not found: %s' %
                         args.from_pretrained)
    cfg_file_path = os.path.join(args.from_pretrained, 'ernie_config.json')
    param_path = os.path.join(args.from_pretrained, 'params')
    vocab_path = os.path.join(args.from_pretrained, 'vocab.txt')
    assert os.path.exists(cfg_file_path) and os.path.exists(
        param_path) and os.path.exists(vocab_path)

    hparams_cli = propeller.parse_hparam(args)
    hparams_config_file = json.loads(open(cfg_file_path).read())
    default_hparams = propeller.HParams(
        batch_size=50,
        warmup_steps=10000,
        learning_rate=1e-4,
        weight_decay=0.01, )

    hparams = default_hparams.join(propeller.HParams(
        **hparams_config_file)).join(hparams_cli)

    default_run_config = dict(
        max_steps=1000000,
        save_steps=10000,
        log_steps=10,
        max_ckpt=3,
        skip_steps=0,
        eval_steps=-1)

    run_config = dict(default_run_config, **json.loads(args.run_config))
    run_config = propeller.RunConfig(**run_config)
M
Meiyim 已提交
372 373 374

    tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained)

M
Meiyim 已提交
375 376 377 378 379 380
    train_ds = make_pretrain_dataset(
        'train',
        args.data_dir,
        vocab=tokenizer.vocab,
        hparams=hparams,
        args=args)
M
Meiyim 已提交
381 382

    seq_shape = [-1, args.max_seqlen]
M
Meiyim 已提交
383 384
    ints_shape = [-1, ]
    shapes = (seq_shape, seq_shape, ints_shape, [-1, 2], ints_shape)
M
Meiyim 已提交
385 386 387 388
    types = ('int64', 'int64', 'int64', 'int64', 'int64')

    train_ds.data_shapes = shapes
    train_ds.data_types = types
M
Meiyim 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    ws = None

    #varname_to_warmstart = re.compile(r'^encoder.*[wb]_0$|^.*embedding$|^.*bias$|^.*scale$|^pooled_fc.[wb]_0$')
    varname_to_warmstart = re.compile(r'.*')
    if args.from_pretrained is not None:
        warm_start_dir = os.path.join(args.from_pretrained, 'params')
        ws = propeller.WarmStartSetting(
                predicate_fn=lambda v: varname_to_warmstart.match(v.name) and os.path.exists(os.path.join(warm_start_dir, v.name)),
                from_dir=warm_start_dir
            )

    ernie_learner = propeller.Learner(
        ernie_pretrain_model_fn,
        run_config,
        params=hparams,
        warm_start_setting=ws)
    ernie_learner.train(train_ds)