pretrain.py 14.2 KB
Newer Older
M
Meiyim 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from __future__ import absolute_import
from __future__ import unicode_literals

import sys
import io
import os
import time
import numpy as np
import re
import logging
import six
from glob import glob
M
Meiyim 已提交
27
from pathlib import Path
M
Meiyim 已提交
28 29 30
from functools import reduce, partial
import itertools

M
Meiyim 已提交
31
import paddle as P
M
Meiyim 已提交
32 33 34 35 36 37 38 39 40
import sentencepiece as spm
import json

from tqdm import tqdm

import random as r

from ernie.modeling_ernie import ErnieModelForPretraining
from ernie.tokenizing_ernie import ErnieTokenizer
M
Meiyim 已提交
41
#from ernie.optimization import AdamW, LinearDecay
M
Meiyim 已提交
42

M
Meiyim 已提交
43
import propeller as propeller_base
M
Meiyim 已提交
44 45 46
import propeller.paddle as propeller
from propeller.paddle.data import Dataset
from propeller import log
M
Meiyim 已提交
47
from demo.utils import create_if_not_exists, get_warmup_and_linear_decay
M
Meiyim 已提交
48 49 50 51 52 53 54 55

log.setLevel(logging.DEBUG)
logging.getLogger().setLevel(logging.DEBUG)

if six.PY3:
    from itertools import accumulate
else:
    import operator
M
Meiyim 已提交
56

M
Meiyim 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    def accumulate(iterable, func=operator.add, initial=None):
        'Return running totals'
        # accumulate([1,2,3,4,5]) --> 1 3 6 10 15
        # accumulate([1,2,3,4,5], initial=100) --> 100 101 103 106 110 115
        # accumulate([1,2,3,4,5], operator.mul) --> 1 2 6 24 120
        it = iter(iterable)
        total = initial
        if initial is None:
            try:
                total = next(it)
            except StopIteration:
                return
        yield total
        for element in it:
            total = func(total, element)
            yield total


def truncate_sentence(seq, from_length, to_length):
M
Meiyim 已提交
76 77 78
    random_begin = np.random.randint(
        0, np.maximum(0, from_length - to_length) + 1)
    return seq[random_begin:random_begin + to_length]
M
Meiyim 已提交
79 80 81 82 83 84 85 86 87 88 89


def build_pair(seg_a, seg_b, max_seqlen, vocab):
    #log.debug('pair %s \n %s' % (seg_a, seg_b))
    cls_id = vocab['[CLS]']
    sep_id = vocab['[SEP]']
    a_len = len(seg_a)
    b_len = len(seg_b)
    ml = max_seqlen - 3
    half_ml = ml // 2
    if a_len > b_len:
M
Meiyim 已提交
90 91
        a_len_truncated, b_len_truncated = np.maximum(
            half_ml, ml - b_len), np.minimum(half_ml, b_len)
M
Meiyim 已提交
92
    else:
M
Meiyim 已提交
93 94
        a_len_truncated, b_len_truncated = np.minimum(
            half_ml, a_len), np.maximum(half_ml, ml - a_len)
M
Meiyim 已提交
95 96 97 98 99 100 101 102 103

    seg_a = truncate_sentence(seg_a, a_len, a_len_truncated)
    seg_b = truncate_sentence(seg_b, b_len, b_len_truncated)

    seg_a_txt, seg_a_info = seg_a[:, 0], seg_a[:, 1]
    seg_b_txt, seg_b_info = seg_b[:, 0], seg_b[:, 1]

    token_type_a = np.ones_like(seg_a_txt, dtype=np.int64) * 0
    token_type_b = np.ones_like(seg_b_txt, dtype=np.int64) * 1
M
Meiyim 已提交
104 105
    sen_emb = np.concatenate(
        [[cls_id], seg_a_txt, [sep_id], seg_b_txt, [sep_id]], 0)
M
Meiyim 已提交
106
    info_emb = np.concatenate([[-1], seg_a_info, [-1], seg_b_info, [-1]], 0)
M
Meiyim 已提交
107 108
    token_type_emb = np.concatenate(
        [[0], token_type_a, [0], token_type_b, [1]], 0)
M
Meiyim 已提交
109 110 111 112 113 114 115 116 117 118 119

    return sen_emb, info_emb, token_type_emb


def apply_mask(sentence, seg_info, mask_rate, vocab_size, vocab):
    pad_id = vocab['[PAD]']
    mask_id = vocab['[MASK]']
    shape = sentence.shape
    batch_size, seqlen = shape

    invalid_pos = np.where(seg_info == -1)
M
Meiyim 已提交
120
    seg_info += 1  #no more =1
M
Meiyim 已提交
121 122
    seg_info_flatten = seg_info.reshape([-1])
    seg_info_incr = seg_info_flatten - np.roll(seg_info_flatten, shift=1)
M
Meiyim 已提交
123 124
    seg_info = np.add.accumulate(
        np.array([0 if s == 0 else 1 for s in seg_info_incr])).reshape(shape)
M
Meiyim 已提交
125 126 127 128 129
    seg_info[invalid_pos] = -1

    u_seginfo = np.array([i for i in np.unique(seg_info) if i != -1])
    np.random.shuffle(u_seginfo)
    sample_num = max(1, int(len(u_seginfo) * mask_rate))
M
Meiyim 已提交
130
    u_seginfo = u_seginfo[:sample_num]
M
Meiyim 已提交
131 132
    mask = reduce(np.logical_or, [seg_info == i for i in u_seginfo])

M
Meiyim 已提交
133
    mask[:, 0] = False  # ignore CLS head
M
Meiyim 已提交
134 135

    rand = np.random.rand(*shape)
M
Meiyim 已提交
136 137 138
    choose_original = rand < 0.1  #
    choose_random_id = (0.1 < rand) & (rand < 0.2)  #
    choose_mask_id = 0.2 < rand  #
M
Meiyim 已提交
139 140 141 142 143 144 145 146 147
    random_id = np.random.randint(1, vocab_size, size=shape)

    replace_id = mask_id * choose_mask_id + \
                 random_id * choose_random_id + \
                 sentence * choose_original

    mask_pos = np.where(mask)
    #mask_pos_flatten = list(map(lambda idx: idx[0] * seqlen + idx[1], zip(*mask_pos))) #transpose
    mask_label = sentence[mask_pos]
M
Meiyim 已提交
148
    sentence[mask_pos] = replace_id[mask_pos]  #overwrite
M
Meiyim 已提交
149 150 151 152
    #log.debug(mask_pos_flatten)
    return sentence, np.stack(mask_pos, -1), mask_label


M
Meiyim 已提交
153
def make_pretrain_dataset(name, dir, vocab, args):
M
Meiyim 已提交
154 155
    gz_files = glob(dir)
    if not gz_files:
M
Meiyim 已提交
156
        raise ValueError('train data not found in %s' % gz_files)
M
Meiyim 已提交
157 158

    log.info('read from %s' % '\n'.join(gz_files))
M
Meiyim 已提交
159 160
    max_input_seqlen = args.max_seqlen
    max_pretrain_seqlen = lambda: max_input_seqlen if r.random() > 0.15 else r.randint(1, max_input_seqlen)  # short sentence rate
M
Meiyim 已提交
161

M
Meiyim 已提交
162 163
    def _parse_gz(record_str):  # function that takes python_str as input
        ex = propeller_base.data.example_pb2.SequenceExample()
M
Meiyim 已提交
164
        ex.ParseFromString(record_str)
M
Meiyim 已提交
165 166 167 168 169 170 171 172 173 174
        doc = [
            np.array(
                f.int64_list.value, dtype=np.int64)
            for f in ex.feature_lists.feature_list['txt'].feature
        ]
        doc_seg = [
            np.array(
                f.int64_list.value, dtype=np.int64)
            for f in ex.feature_lists.feature_list['segs'].feature
        ]
M
Meiyim 已提交
175 176 177 178 179
        return doc, doc_seg

    def bb_to_segments(filename):
        ds = Dataset.from_record_file(filename).map(_parse_gz)
        iterable = iter(ds)
M
Meiyim 已提交
180

M
Meiyim 已提交
181 182 183 184 185 186 187 188 189
        def gen():
            buf, size = [], 0
            iterator = iter(ds)
            while 1:
                doc, doc_seg = next(iterator)
                for line, line_seg in zip(doc, doc_seg):
                    #line = np.array(sp_model.SampleEncodeAsIds(line, -1, 0.1), dtype=np.int64) # 0.1 means large variance on sentence piece result
                    if len(line) == 0:
                        continue
M
Meiyim 已提交
190 191 192
                    line = np.array(
                        line
                    )  # 0.1 means large variance on sentence piece result
M
Meiyim 已提交
193 194 195 196 197 198 199
                    line_seg = np.array(line_seg)
                    size += len(line)
                    buf.append(np.stack([line, line_seg]).transpose())
                    if size > max_input_seqlen:
                        yield buf,
                        buf, size = [], 0
                if len(buf) != 0:
M
Meiyim 已提交
200
                    yield buf,
M
Meiyim 已提交
201
                    buf, size = [], 0
M
Meiyim 已提交
202

M
Meiyim 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215
        return Dataset.from_generator_func(gen)

    def sample_negative(dataset):
        def gen():
            iterator = iter(dataset)
            while True:
                chunk_a, = next(iterator)
                #chunk_b, = next(iterator)

                seqlen = max_pretrain_seqlen()
                seqlen_a = r.randint(1, seqlen)
                seqlen_b = seqlen - seqlen_a
                len_a = list(accumulate([len(c) for c in chunk_a]))
M
Meiyim 已提交
216 217 218 219 220
                buf_a = [c for c, l in zip(chunk_a, len_a)
                         if l < seqlen_a]  #always take the first one
                buf_b = [
                    c for c, l in zip(chunk_a, len_a) if seqlen_a <= l < seqlen
                ]
M
Meiyim 已提交
221

M
Meiyim 已提交
222
                if r.random() < 0.5:  #pos or neg
M
Meiyim 已提交
223 224 225 226 227 228 229 230 231 232 233
                    label = np.int64(1)
                else:
                    label = np.int64(0)
                    buf_a, buf_b = buf_b, buf_a

                if not (len(buf_a) and len(buf_b)):
                    continue
                a = np.concatenate(buf_a)
                b = np.concatenate(buf_b)
                #log.debug(a)
                #log.debug(b)
M
Meiyim 已提交
234 235 236
                sample, seg_info, token_type = build_pair(
                    a, b, args.max_seqlen,
                    vocab)  #negative sample might exceed max seqlen
M
Meiyim 已提交
237 238 239 240 241 242 243
                yield sample, seg_info, token_type, label

        ds = propeller.data.Dataset.from_generator_func(gen)
        return ds

    def after(sentence, seg_info, segments, label):
        batch_size, seqlen = sentence.shape
M
Meiyim 已提交
244 245 246
        sentence, mask_pos, mlm_label = apply_mask(sentence, seg_info,
                                                   args.mask_rate,
                                                   len(vocab), vocab)
M
Meiyim 已提交
247 248 249 250

        ra = r.random()
        if ra < args.check:
            print('***')
M
Meiyim 已提交
251 252 253 254
            print('\n'.join([
                str(j) + '\t' + '|'.join(map(str, i))
                for i, j in zip(sentence.tolist(), label)
            ]))
M
Meiyim 已提交
255
            print('***')
M
Meiyim 已提交
256 257
            print('\n'.join(
                ['|'.join(map(str, i)) for i in seg_info.tolist()]))
M
Meiyim 已提交
258 259 260 261 262 263 264 265 266 267
            print('***')
            print('|'.join(map(str, mlm_label.tolist())))
            print('***')

        return sentence, segments, mlm_label, mask_pos, label

    # pretrain pipeline
    dataset = Dataset.from_list(gz_files)
    if propeller.train.distribution.status.mode == propeller.train.distribution.DistributionMode.NCCL:
        log.info('Apply sharding in distribution env')
M
Meiyim 已提交
268 269 270 271 272 273 274
        if len(gz_files) < propeller.train.distribution.status.num_replica:
            raise ValueError(
                'not enough train file to shard: # of train files: %d, # of workers %d'
                % (len(gz_files),
                   propeller.train.distribution.status.num_replica))
        dataset = dataset.shard(env.nranks, env.dev_id)

M
Meiyim 已提交
275 276
    dataset = dataset.repeat().shuffle(buffer_size=len(gz_files))

M
Meiyim 已提交
277 278 279 280
    dataset = dataset.interleave(
        map_fn=bb_to_segments, cycle_length=len(gz_files), block_length=1)
    dataset = dataset.shuffle(
        buffer_size=1000)  #must shuffle to ensure negative sample randomness
M
Meiyim 已提交
281
    dataset = sample_negative(dataset)
M
Meiyim 已提交
282
    dataset = dataset.padded_batch(args.bsz, (0, 0, 0, 0)).map(after)
M
Meiyim 已提交
283 284 285 286 287 288 289 290 291 292 293
    dataset.name = name
    return dataset


if __name__ == '__main__':
    if six.PY3:
        import io
        sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8')
        sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8')

    parser = propeller.ArgumentParser('DAN model with Paddle')
M
Meiyim 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
    parser.add_argument(
        '--max_seqlen',
        type=int,
        default=256,
        help='max sequence length, documents from pretrain data will expand to this length'
    )
    parser.add_argument(
        '--data_dir',
        type=str,
        required=True,
        help='protobuf pretrain data directory')
    parser.add_argument(
        '--mask_rate',
        type=float,
        default=0.15,
        help='probability of input token tobe masked')
    parser.add_argument(
        '--check', type=float, default=0., help='probability of debug info')
    parser.add_argument(
        '--warmup_steps', type=int, default=10000, help='warmups steps')
    parser.add_argument(
        '--max_steps', type=int, default=1000000, help='max pretrian steps')
    parser.add_argument('--lr', type=float, default=1e-4, help='learning_rate')
    parser.add_argument(
        '--from_pretrained',
        type=Path,
        required=True,
        help='pretraind model dir')
    parser.add_argument(
        '--save_dir', type=Path, required=True, help='model output_dir')
    parser.add_argument(
        '--wd',
        type=float,
        default=0.01,
        help='weight decay, aka L2 regularizer')
    parser.add_argument('--bsz', type=int, default=50)
    parser.add_argument(
        '--use_amp',
        action='store_true',
        help='only activate AMP(auto mixed precision accelatoin) on TensorCore compatible devices'
M
Meiyim 已提交
334 335
    )

M
Meiyim 已提交
336
    args = parser.parse_args()
M
Meiyim 已提交
337

M
Meiyim 已提交
338 339
    P.distributed.init_parallel_env()
    env = P.distributed.ParallelEnv()
M
Meiyim 已提交
340 341 342

    tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained)

M
Meiyim 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
    train_ds = make_pretrain_dataset(
        'train', args.data_dir, vocab=tokenizer.vocab, args=args)

    model = ErnieModelForPretraining.from_pretrained(args.from_pretrained)

    param_name_to_exclue_from_weight_decay = re.compile(
        r'.*layer_norm_scale|.*layer_norm_bias|.*b_0')

    lr_scheduler = P.optimizer.lr.LambdaDecay(
        args.lr,
        get_warmup_and_linear_decay(args.max_steps, args.warmup_steps))
    g_clip = P.nn.ClipGradByGlobalNorm(1.0)  #experimental

    opt = P.optimizer.AdamW(
        learning_rate=lr_scheduler,
        parameters=model.parameters(),
        apply_decay_param_fun=lambda n: param_name_to_exclue_from_weight_decay.match(n),
        weight_decay=args.wd,
        grad_clip=g_clip)

    model = P.DataParallel(model)

    scaler = P.amp.GradScaler(enable=args.use_amp)
    create_if_not_exists(args.save_dir)
    with P.amp.auto_cast(args.use_amp):
        for step, samples in enumerate(
                P.io.DataLoader(
                    train_ds, places=P.CUDAPlace(env.dev_id), batch_size=0)):
            (src_ids, sent_ids, mlm_label, mask_pos, nsp_label) = samples
            loss, mlmloss, nsploss = model(
                src_ids,
                sent_ids,
                labels=mlm_label,
                mlm_pos=mask_pos,
                nsp_labels=nsp_label)
            loss = scaler.scale(loss)
            loss.backward()
            scaler.minimize(opt, loss)
            model.clear_gradients()
            lr_scheduler.step()

            if step % 10 == 0:
                _lr = lr_scheduler.get_lr()
                if args.use_amp:
                    _l = (loss / scaler._scale).numpy()
                    msg = '[rank-%d][step-%d] train loss %.5f lr %.3e scaling %.3e' % (
                        env.dev_id, step, _l, _lr, scaler._scale.numpy())
                else:
                    _l = loss.numpy()
                    msg = '[rank-%d][step-%d] train loss %.5f lr %.3e' % (
                        env.dev_id, step, _l, _lr)
                log.debug(msg)
            if step % 1000 == 0 and env.dev_id == 0:
                log.debug('saveing...')
                P.save(model.state_dict(), args.save_dir / 'ckpt.bin')
            if step > args.max_steps:
                break
    log.info('done')