README.md 10.3 KB
Newer Older
D
dingsiyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
English | [简体中文](./README_zh.md)

## _ERNIE-Doc_: A Retrospective Long-Document Modeling Transformer

- [Framework](#framework)
- [Pre-trained Models](#Pre-trained-Models)
- [Fine-tuning Tasks](#Fine-tuning-Tasks)
  * [Language Modeling](#Language-Modeling)
  * [Long-Text Classification](#Long-Text-Classification)
  * [Question Answering](#Question-Answering)
  * [Information Extraction](#Information-Extraction)
  * [Semantic Matching](#Semantic-Matching)
- [Usage](#Usage)
  * [Install Paddle](#Install-PaddlePaddle)
  * [Fine-tuning](#Fine-tuning)
- [Citation](#Citation)

For technical description of the algorithm, please see our paper:
>[_**ERNIE-Doc: A Retrospective Long-Document Modeling Transformer**_](https://arxiv.org/abs/2012.15688)
>
>Siyu Ding\*, Junyuan Shang\*, Shuohuan Wang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang (\* : equal contribution)
>
>Preprint December 2020
>
>Accepted by **ACL-2021**

![ERNIE-Doc](https://img.shields.io/badge/Pretraining-Long%20Document%20Modeling-green) ![paper](https://img.shields.io/badge/Paper-ACL2021-yellow) 

---
**ERNIE-Doc is a document-level language pretraining model**. Two well-designed techniques, namely the **retrospective feed mechanism** and the **enhanced recurrence mechanism**, enable ERNIE-Doc, which has a much longer effective context length, to capture the contextual information of a complete document. ERNIE-Doc improved the state-of-the-art language modeling result of perplexity to 16.8 on WikiText-103. Moreover, it outperformed competitive pretraining models by a large margin on most language understanding tasks, such as text classification, question answering, information extraction and semantic matching.

## Framework

We proposed three novel methods to enhance the long document modeling ability of Transformers:

- **Retrospective Feed Mechanism**: Inspired by the human reading behavior of skimming a document first and then looking back upon it attentively, we design a retrospective feed mechanism in which segments from a document are fed twice as input. As a result, each segment in the retrospective phase could explicitly fuse the semantic information of the entire document learned in the skimming phase, which prevents context fragmentation.
- **Enhanced Recurrence Mechansim**, a drop-in replacement for a Recurrence Transformer (like Transformer-XL), by changing the shifting-one-layer-downwards recurrence to the same-layer recurrence. In this manner, the maximum effective context length can be expanded, and past higher-level representations can be exploited to enrich future lower-level representations.
- **Segment-reordering Objective**, a document-aware task of predicting the correct order of the permuted set of segments of a document, to model the relationship among segments directly. This allows ERNIE-Doc to build full document representations for prediction. 



![framework](.meta/framework.png)
Illustrations of ERNIE-Doc and Recurrence Transformers, where models with three layers take as input a long document which is sliced into four segments.

## Pre-trained Models

We release the checkpoints for **ERNIE-Doc _base_en/zh_** and **ERNIE-Doc _large_en_** model。 

- [**ERNIE-Doc _base_en_**](https://ernie-github.cdn.bcebos.com/model-ernie-doc-base-en.tar.gz) (_12-layer, 768-hidden, 12-heads_)
- [**ERNIE-Doc _base_zh_**](https://ernie-github.cdn.bcebos.com/model-ernie-doc-base-zh.tar.gz) (_12-layer, 768-hidden, 12-heads_)
- [**ERNIE-Doc _large_en_**](https://ernie-github.cdn.bcebos.com/model-ernie-doc-large-en.tar.gz) (_24-layer, 1024-hidden, 16-heads_)


## Fine-tuning Tasks

We compare the performance of [ERNIE-Doc](https://arxiv.org/abs/2012.15688) with the existing SOTA pre-training models (such as [Longformer](https://arxiv.org/abs/2004.05150), [BigBird](https://arxiv.org/abs/2007.14062), [ETC](https://arxiv.org/abs/2004.08483) and [ERNIE2.0](https://arxiv.org/abs/1907.12412)) for language modeling (**_WikiText-103_**) and document-level natural language understanding tasks, including long-text classification (**_IMDB_**,  **_HYP_**, **_THUCNews_**, **_IFLYTEK_**), question answering (**_TriviaQA_**, **_HotpotQA_**, **_DRCD_**, **_CMRC2018_**, **_DuReader_**, **_C3_**), information extraction (**_OpenKPE_**) and semantic matching (**_CAIL2019-SCM_**).

### Language Modeling

- [WikiText-103](https://arxiv.org/abs/1609.07843)

| Model                    | Param. | PPL  |
|--------------------------|:--------:|:------:|
| _Results of base models_   |        |      |
| LSTM                     |    -   | 48.7 |
| LSTM+Neural cache        |    -   | 40.8 |
| GCNN-14                  |    -   | 37.2 |
| QRNN                     |  151M  | 33.0 |
| Transformer-XL Base      |  151M  | 24.0 |
| SegaTransformer-XL Base  |  151M  | 22.5 |
| **ERNIE-Doc** Base           |  151M  | **21.0** |
| _Results of large models_  |        |      |
| Adaptive Input           |  247M  | 18.7 |
| Transformer-XL Large     |  247M  | 18.3 |
| Compressive Transformer  |  247M  | 17.1 |
| SegaTransformer-XL Large |  247M  | 17.1 |
| **ERNIE-Doc** Large          |  247M  | **16.8** |

### Long-Text Classification

- [IMDB reviews](http://ai.stanford.edu/~amaas/data/sentiment/index.html)

| Models          | Acc. | F1 | 
|-----------------|:----:|:----:|
| RoBERTa         | 95.3 | 95.0 | 
| Longformer      | 95.7 |   -  | 
| BigBird         |   -  | 95.2 |
| **ERNIE-Doc** Base  | **96.1** | **96.1** |
| XLNet-Large     | 96.8 |   -  |   -  |
| **ERNIE-Doc** Large | **97.1** | **97.1** | 

- [Hyperpartisan News Dection](https://pan.webis.de/semeval19/semeval19-web/)

| Models          | F1 |
|-----------------|:----:|
| RoBERTa         | 87.8 | 
| Longformer      | 94.8 |   
| BigBird         |  92.2  | 
| **ERNIE-Doc** Base  |  **96.3** | 
| **ERNIE-Doc** Large | **96.6** | 

D
fix thu  
dingsiyu 已提交
102
- [THUCNews(THU)](https://github.com/gaussic/text-classification-cnn-rnn)[IFLYTEK(IFK)](https://arxiv.org/abs/2004.05986)
D
dingsiyu 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

| Models          |    THU   |    THU   |    IFK   |
|-----------------|:--------:|:--------:|:--------:|
|                 |   Acc.   |   Acc.   |   Acc.   |
|                 |    Dev   | Test     |    Dev   |
| BERT            |   97.7   |   97.3   |   60.3   |
| BERT-wwm-ext    |   97.6   |   97.6   |   59.4   |
| RoBERTa-wwm-ext |     -    |     -    |   60.3   |
| ERNIE 1.0       |   97.7   |   97.3   |   59.0   |
| ERNIE 2.0       |   98.0   |   97.5   |   61.7   |
| **ERNIE-Doc**       | **98.3** | **97.7** | **62.4** |

### Question Answering

- [TriviaQA](http://nlp.cs.washington.edu/triviaqa/) on dev-set

| Models        | F1 |
|-----------------|:----:|
| RoBERTa         | 74.3 | 
| Longformer      | 75.2 |   
| BigBird         |  79.5 | 
| **ERNIE-Doc** Base  |  **80.1** | 
| Longformer Large  |  77.8 | 
|   BigBird Large  |  - | 
| **ERNIE-Doc** Large | **82.5** | 

- [HotpotQA](https://hotpotqa.github.io/) on dev-set

| Models          | Span-F1 | Supp.-F1 | Joint-F1 |
|-----------------|:----:|:----:|:----:|
| RoBERTa         | 73.5 | 83.4 | 63.5 | 
| Longformer      | 74.3 |  84.4 | 64.4 |  
| BigBird         |  75.5 | **87.1** | 67.8 | 
| **ERNIE-Doc** Base  |  **79.4** | 86.3 | **70.5** | 
| Longformer Large  |  81.0 | 85.8 | 71.4 | 
|   BigBird Large  |  81.3 | **89.4** | - | 
| **ERNIE-Doc** Large | **82.2** | 87.6 | **73.7** | 

- [DRCD](https://arxiv.org/abs/1806.00920), [CMRC2018](https://arxiv.org/abs/1810.07366), [DuReader](https://arxiv.org/abs/1711.05073), [C3](https://arxiv.org/abs/1904.09679)

| Models            | DRCD          | DRCD          | CMRC2018      | DuReader      | C3       | C3       |
|-----------------|---------------|---------------|---------------|---------------|----------|----------|
|                 | dev           | test          | dev           | dev           | dev      | test     |
|                 | EM/F1         | EM/F1         | EM/F1         | EM/F1         | Acc.     | Acc.     |
| BERT            | 85.7/91.6     | 84.9/90.9     | 66.3/85.9     | 59.5/73.1     |   65.7   |   64.5   |
| BERT-wwm-ext    | 85.0/91.2     | 83.6/90.4     | 67.1/85.7     | -/-           |   67.8   |   68.5   |
| RoBERTa-wwm-ext | 86.6/92.5     | 85.2/92.0     | 67.4/87.2     | -/-           |   67.1   |   66.5   |
| MacBERT         | 88.3/93.5     | 87.9/93.2     | 69.5/87.7     | -/-           |     -    |     -    |
| XLNet-zh        | 83.2/92.0     | 82.8/91.8     | 63.0/85.9     | -/-           |     -    |     -    |
| ERNIE 1.0       | 84.6/90.9     | 84.0/90.5     | 65.1/85.1     | 57.9/72/1     |   65.5   |   64.1   |
| ERNIE 2.0       | 88.5/93.8     | 88.0/93.4     | 69.1/88.6     | 61.3/74.9     |   72.3   |   73.2   |
| **ERNIE-Doc**   | **90.5/95.2** | **90.5/95.1** | **76.1/91.6** | **65.8/77.9** | **76.5** | **76.5** |

### Information Extraction

- [Open Domain Web Keyphrase Extraction](https://www.aclweb.org/anthology/D19-1521/)

| Models    | F1@1 | F1@3 | F1@5 |
|-----------|:----:|:----:|:----:|
| BLING-KPE | 26.7 | 29.2 | 20.9 |
| JointKPE  | 39.1 | 39.8 | 33.8 |
| ETC       |   -  | 40.2 |   -  |
| ERNIE-Doc | **40.2** | **40.5** | **34.4** |

### Semantic Matching

- [CAIL2019-SCM](https://arxiv.org/abs/1911.08962)

| Models    |      Dev (Acc.)     |     Test  (Acc.)       |
|-----------|:-------------:|:-------------:|
| BERT      |      61.9     |      67.3     |
| ERNIE 2.0 |      64.9     |      67.9     |
| ERNIE-Doc | **65.6** | **68.8** |


## Usage

### Install PaddlePaddle

D
fix thu  
dingsiyu 已提交
182
This code base has been tested with Paddle (version>=1.8) with Python3. Other dependency of ERNIE-GEN is listed in `requirements.txt`, you can install it by
D
dingsiyu 已提交
183 184 185 186 187 188 189 190 191 192 193
```script
pip install -r requirements.txt
```

### Fine-tuning
We release the finetuning code for English and Chinese classification tasks and Chinese Question Answers Tasks. For example, you can finetune **ERNIE-Doc** base model on IMDB and IFLYTEK dataset by
```shell
sh script/run_imdb.sh
sh script/run_iflytek.sh
sh script/run_dureader.sh
```
D
fix thu  
dingsiyu 已提交
194
[Preprocessing code for IMDB dataset](./ernie_doc/data/imdb/README.md)
D
dingsiyu 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216


The log of training and the evaluation results are in `log/job.log.0`.

**Notice**: The actual total batch size is equal to `configured batch size * number of used gpus`.


## Citation

You can cite the paper as below:

```
@article{ding2020ernie,
  title={ERNIE-DOC: The Retrospective Long-Document Modeling Transformer},
  author={Ding, Siyu and Shang, Junyuan and Wang, Shuohuan and Sun, Yu and Tian, Hao and Wu, Hua and Wang, Haifeng},
  journal={arXiv preprint arXiv:2012.15688},
  year={2020}
}
```