eval.py 7.1 KB
Newer Older
Z
zhanghan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
#!/usr/bin/env python
__author__ = 'xinya'

from bleu.bleu import Bleu
from meteor.meteor import Meteor
from rouge.rouge import Rouge
from cider.cider import Cider
from collections import defaultdict
from argparse import ArgumentParser
import string

import sys
#reload(sys)
#sys.setdefaultencoding('utf-8')

_tok_dict = {"(": "-lrb-", ")": "-rrb-",
             "[": "-lsb-", "]": "-rsb-",
             "{": "-lcb-", "}": "-rcb-",
             "[UNK]": "UNK", '&': '&amp;', '<': '&lt;', '>': '&gt;'}


def _is_digit(w):
    for ch in w:
        if not(ch.isdigit() or ch == ','):
            return False
    return True


def detokenize(tk_list):
    r_list = []
    for tk in tk_list:
        if tk.startswith('##') and len(r_list) > 0:
            r_list[-1] = r_list[-1] + tk[2:]
        else:
            r_list.append(tk)
    return r_list


def fix_tokenization(text):
    input_tokens = text.split()
    output_tokens = []
    has_left_quote = False
    has_left_single_quote = False

    i = 0
    prev_dash = False
    while i < len(input_tokens):
        tok = input_tokens[i]
        flag_prev_dash = False
        if tok in _tok_dict.keys():
            output_tokens.append(_tok_dict[tok])
            i += 1
        elif tok == "\"":
            if has_left_quote:
                output_tokens.append("''")
            else:
                output_tokens.append("``")
            has_left_quote = not has_left_quote
            i += 1
        elif tok == "'" and len(output_tokens) > 0 and output_tokens[-1].endswith("n") and i < len(input_tokens) - 1 and input_tokens[i + 1] == "t":
            output_tokens[-1] = output_tokens[-1][:-1]
            output_tokens.append("n't")
            i += 2
        elif tok == "'" and i < len(input_tokens) - 1 and input_tokens[i + 1] in ("s", "d", "ll"):
            output_tokens.append("'"+input_tokens[i + 1])
            i += 2
        elif tok == "'":
            if has_left_single_quote:
                output_tokens.append("'")
            else:
                output_tokens.append("`")
            has_left_single_quote = not has_left_single_quote
            i += 1
        elif tok == "." and i < len(input_tokens) - 2 and input_tokens[i + 1] == "." and input_tokens[i + 2] == ".":
            output_tokens.append("...")
            i += 3
        elif tok == "," and len(output_tokens) > 0 and _is_digit(output_tokens[-1]) and i < len(input_tokens) - 1 and _is_digit(input_tokens[i + 1]):
            # $ 3 , 000 -> $ 3,000
            output_tokens[-1] += ','+input_tokens[i + 1]
            i += 2
        elif tok == "." and len(output_tokens) > 0 and output_tokens[-1].isdigit() and i < len(input_tokens) - 1 and input_tokens[i + 1].isdigit():
            # 3 . 03 -> $ 3.03
            output_tokens[-1] += '.'+input_tokens[i + 1]
            i += 2
        elif tok == "." and len(output_tokens) > 0 and len(output_tokens[-1]) == 1 and output_tokens[-1].isupper() and i < len(input_tokens) - 2 and len(input_tokens[i + 1]) == 1 and input_tokens[i + 1].isupper() and input_tokens[i + 2] == '.':
            # U . N . -> U.N.
            k = i+3
            while k+2 < len(input_tokens):
                if len(input_tokens[k + 1]) == 1 and input_tokens[k + 1].isupper() and input_tokens[k + 2] == '.':
                    k += 2
                else:
                    break
            output_tokens[-1] += ''.join(input_tokens[i:k])
            i += 2
        elif tok == "-":
            if i < len(input_tokens) - 1 and input_tokens[i + 1] == "-":
                output_tokens.append("--")
                i += 2
            elif i == len(input_tokens) - 1 or i == 0:
                output_tokens.append("-")
                i += 1
            elif output_tokens[-1] not in string.punctuation and input_tokens[i + 1][0] not in string.punctuation:
                output_tokens[-1] += "-"
                i += 1
                flag_prev_dash = True
            else:
                output_tokens.append("-")
                i += 1
        elif prev_dash and len(output_tokens) > 0 and tok[0] not in string.punctuation:
            output_tokens[-1] += tok
            i += 1
        else:
            output_tokens.append(tok)
            i += 1
        prev_dash = flag_prev_dash
    return " ".join(output_tokens)


class QGEvalCap:
    def __init__(self, gts, res):
        self.gts = gts
        self.res = res

    def evaluate(self):
        output = []
        scorers = [
            (Bleu(4), ["Bleu_1", "Bleu_2", "Bleu_3", "Bleu_4"]),
            (Meteor(), "METEOR"),
            (Rouge(), "ROUGE_L"),
            # (Cider(), "CIDEr")
        ]

        # =================================================
        # Compute scores
        # =================================================
        for scorer, method in scorers:
            # print 'computing %s score...'%(scorer.method())
            score, scores = scorer.compute_score(self.gts, self.res)
            if type(method) == list:
                for sc, scs, m in zip(score, scores, method):
                    print("%s: %0.5f" % (m, sc))
                    output.append(sc)
            else:
                print("%s: %0.5f" % (method, score))
                output.append(score)
        return output


def eval(out_file, src_file, tgt_file, isDIn=False, num_pairs=500):
    """
        Given a filename, calculate the metric scores for that prediction file

        isDin: boolean value to check whether input file is DirectIn.txt
    """

    pairs = []
    with open(src_file, 'r') as infile:
        for line in infile:
            pair = {}
            pair['tokenized_sentence'] = line[:-1].strip().lower()
            pairs.append(pair)

    with open(tgt_file, "r") as infile:
        cnt = 0
        for line in infile:
            pairs[cnt]['tokenized_question'] = line[:-1].strip()
            cnt += 1

    output = []
    with open(out_file, 'r') as infile:
        for line in infile:
            line = fix_tokenization(line[:-1].strip()).lower()
            output.append(line)

    for idx, pair in enumerate(pairs):
        pair['prediction'] = output[idx]

    # eval
    from eval import QGEvalCap
    import json
    from json import encoder
    encoder.FLOAT_REPR = lambda o: format(o, '.4f')

    res = defaultdict(lambda: [])
    gts = defaultdict(lambda: [])

    for pair in pairs[:]:
        key = pair['tokenized_sentence']
        res[key] = [pair['prediction'].encode('utf-8')]

        # gts
        gts[key].append(pair['tokenized_question'].encode('utf-8'))

    QGEval = QGEvalCap(gts, res)
    return QGEval.evaluate()


if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument("-out", "--out_file", dest="out_file",
                        default="./output/pred.txt", help="output file to compare")
    parser.add_argument("-src", "--src_file", dest="src_file",
                        default="./qg_data/test/test.pa.txt", help="src file")
    parser.add_argument("-tgt", "--tgt_file", dest="tgt_file",
                        default="./qg_data/nqg_processed_data/tgt-test.txt", help="target file")
    args = parser.parse_args()

    print("scores: \n")
    eval(args.out_file, args.src_file, args.tgt_file)